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Preface

Preface

This book began life some years ago as a set of hand-written lecture notes which were photocopied and
given out to students. The course at that time was called Statistical Physics 2 and was a final-year
undergraduate option, following on from the earlier, introductory course. An attractive feature of the
advanced course was its unified treatment of equilibrium ensembles, in which a combinatorial argument
was used once only, to derive an equilibrium probability distribution, which could then be directly applied
to many different physical situations. This was in marked contrast to the more elementary course which
carried out a different combinatorial argument for each of the various different applications. In my view
the more advanced approach was very much simpler, with less potential for confusion.

At that time the remainder of the course was heavily biased towards a specialized treatment of critical
phenomena, reflecting the research interests of my predecessors, and had become unpopular. When I took
over, I reduced the amount of critical phenomena, and in its place added material on time-dependence,
on return to equilibrium, and on transport equations. In particular, I introduced the reversibility paradox
and the concept of the arrow of time. This material proved to be a popular source of class discussions and
had the pedagogic virtue of challenging superficial assumptions about the subject.

The lecture notes developed over the years into the present book form. As it had been generally found
helpful by students, I thought that it would be a good idea to make it more widely available. I envisage
it as proving helpful to someone who is already taking a course on statistical physics and who would like
a different perspective on the subject.

In this book we concentrate on the use of the probability distribution to specify a macroscopic physical
system in terms of its microscopic configuration. Then, from the normalisation of the distribution, we may
obtain the partition function Z; and, by using bridge equations such as F = −kT lnZ, we may obtain
the macroscopic thermodynamics of the system, in terms of the free energy F , the Boltzmann constant k,
and the absolute temperature T .

The book is in three parts, as follows:

Part 1: Statistical ensembles We use the principle of maximum entropy to obtain a general form for
the probability distribution (and hence partition function) for an ensemble which is subject to two
non-trivial constraints. This result is readily specialised to the canonical and grand canonical en-
sembles, and is then applied to problems involving non-interacting particles, such as cavity radiation
and spins on a lattice.

Part 2: The many-body problem The procedures of Part 1 are then extended to the case where par-
ticle interactions, due to Coulomb or molecular binding forces, lead to a coupled Hamiltonian. We
see that such coupling no longer allows us to factorise the partition function into products of single-
particle forms. We consider the general methods of tackling this problem by means of mean-field
theories and perturbation expansion, and conclude with the ultimate form of many-body problem
when the system is close to a phase transition.

Part 3: The arrow of time We now consider systems out of equilibrium and show how an exact theory
leads to the paradoxical result that the system energy does not change with time. We find that if
we coarse-grain our system description (i.e. reduce the amount of detailed information contained
in it) then the entropy increases with time and our description becomes consistent with the second
law. We treat both classical (Liouville’s equation) and quantum (Fermi’s master equation) theories.
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Preface

We see how the return to equilibrium is accompanied by macroscopic fluxes and how the relevant
transport equations may be derived. We also consider the dynamics of fluctuations and associated
diffusion processes.

An underlying theme of the book is the development of irreversible behaviour. At the macroscopic (or
everyday) level, we are all familiar with the idea of irreversibility with time. In broad terms, everything
(and everyone, for that matter) is born, grows old and dies. The reverse phenomenon never occurs! Yet if
we specify any macroscopic system at a microscopic level, the basic interactions are reversible in time. So,
in some way, the symmetry with respect to time is broken in going from a microscopic to a macroscopic
description of the system.

This situation has long been regarded as paradoxical, and indeed as posing the fundamental question
of statistical mechanics. If the collisions between the constituent molecules of a gas, for instance, obey
Newton’s laws of motion (or, equivalently, the equations of quantum mechanics) then each such collision can
be reversed in time without violating the governing equations. Thus, the microscopic governing equations
imply no preferred direction in time for the assembly as a whole. In other words, at the microscopic level
there seems to be no particular reason why an isolated assembly should go to equilibrium and then stay
there.

It is, of course true that the paradox can be resolved, if only in a rather superficial way, by insisting
upon taking a probabilistic view at even the macroscopic level (as well as at the microscopic level: we shall
enlarge on this point presently). That is, our normal deterministic view is that if an isolated assembly is
not in equilibrium at some initial time, then as time goes on, it will move to equilibrium. However, we
could replace this statement by adopting the view that the equilibrium state is merely the most probable
state. Then we do not rule out reversibility in time: we merely say that it is highly improbable.

Nevertheless, from our point of view, there is merit in studying the question at a much more technical
level, for two quite pragmatic reasons. First, we are led to consider the concept of coarse graining, in
which we systematically reduce the fineness of resolution of our microscopic description. Second, (and
this also arises from the first point) we are also led to consider the all-important transport equations,
which describe the macroscopic flows of momentum, heat and mass, which accompany the movement of
an assembly towards equilibrium.

Lastly, we complete these introductory remarks by making a general observation about whether we
should use a quantum representation or a classical representation for the microscopic constituents of an
assembly. For a purely microscopic description of the assembly, we know of course, that the quantum
description is (in our present state of knowledge) the correct one. But we are also aware that for certain
limiting cases (high temperatures or low densities, for instance) the classical description can be used
without significant error. It is also true that the statistical uncertainties associated with large numbers
and finite-sized systems can overwhelm some of the characteristic features of the quantum mechanical
description and to some extent blur the distinction between the two representations. In practical terms,
this distinction can boil down to the following:

• In a quantum representation, particles are inherently indistinguishable and occupy discrete states.
This means that any microstate of the assembly is one of a denumerable set of such states. As time
goes on, the assembly fluctuates randomly from one discrete microstate to another.

• In a classical representation, particles are distinguishable, because their motion is deterministic and
predictable, and any initial labelling is preserved. The microstate of the assembly is a continuous
function of time.

From a pragmatic point of view, it is clear that the quantum description facilitates the evaluation of
probabilities and particularly of statistical weights. On the other hand, it may be less immediately obvious,
but we shall see later that the evolution in time of an assembly is more easily studied in the classical
representation. Thus, when we are concerned with general procedures (as we mostly shall be), we shall
allow practical considerations to decide the question of ‘classical versus quantum’. However, we shall have
to consider formally the transition from one system of description to another, so that we can be sure that

iii
results established by quantum means are equally valid in a classical description of the microstate. This
will be done from time to time, where it occurs naturally.

iv
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Chapter 1

Introduction

In this first chapter we revise the basic concept of elementary statistical physics, which is that a macroscopic
physical system can be represented by an assembly of microscopic particles. We also state a number of
basic definitions, and then extend the idea of the isolated assembly to the statistical ensemble or ‘assembly
of assemblies’; and show that the Boltzmann entropy, as given by equation (1.3) for an isolated assembly,
can be used to derive an expression for an assembly in an ensemble, as given by equation (1.10). This
form of entropy is then used in subsequent chapters to determine the most probable distribution for the
assembly which corresponds to maximum entropy..

Formally we consider a macroscopic system to be an assembly of N identical particles in a box. In
general, the number N is very large. For instance, for air at STP, N is of the order 3× 1019 for one cubic
centimetre of gas.

If we specify the state of our assembly at the macroscopic (i.e. thermodynamic) level, then we usually
require only a few numbers, such as N particles in a box of volume V , at temperature T , and with total
energy E or pressure P . Such a specification is known as a macrostate, and we write it as:

macrostate ≡ (E, V,N, T, P . . .).

Note that for a simple gas in equilibrium only three of these variables are independent. That is, if we
specify the three E, V and N , we can obtain all the others T, P, S . . . from those three.

On the other hand, we may specify the state of our assembly at the microscopic level; for instance, in
the classical assembly, by giving the positions and velocities of all the individual molecules. Evidently this
requires of the order of 6N numbers and is known as the microstate of the assembly. On both classical
and quantum pictures, the microstates are rapidly changing functions of time, even in isolated assemblies.
This is a point which we shall develop in some detail later on.

It is, of course, evident that there will be many ways in which the microscopic variables of an assembly
can be arranged. This means that for any one macrostate, there will be many possible microstates. We
define the

statistical weight ≡ Ω(E, V,N . . .)

of a particular macrostate (E, V,N . . .) as the number of microstates corresponding to that particular
macrostate.

1.1 The isolated assembly

The term ’isolated’ essentially means energy or thermal isolation. That is, the total energy E of the
assembly is constant. In order to have a definite example, we consider an ideal gas of N particles in a box
of volume V . (Note: E, V and N are constraints on the values of energy, volume and particle number for
the assembly.)

We invoke a very simple quantum mechanical description of the assembly, in which each particle has
access to states with energy levels

ε0, ε1, ε2 . . .

2

Then a microstate of the assembly is the particular way in which the N particles are divided up among
the energy levels.

• n0 particles on level ε0

• n1 particles on level ε1
...

•

• ns particles on level εs

Also, the total energy of the assembly is given by

E =
∑
s

nsεs, (1.1)

such that ∑
s

ns = N. (1.2)

This way of expressing the energy of an assembly in terms of the number of single particles on a level is
known as the occupation number representation. If we know the energy levels of the assembly, then we
may simply express the microstate as

microstate ≡ {n0, n1, n2 . . . ns} ≡ {ns}.

We now make two basic postulates about the microscopic description of the assembly. First, we assume
that all microstates are equally likely. This leads us to the immediate conclusion that the probability of
any given microstate occurring is given by

p({ns}) = 1/Ω,

where Ω is the total number of such equally likely microstates.
Second, we assume that the Boltzmann definition of the entropy, in the form

S = k ln Ω, (1.3)

where k is the Boltzmann constant, may be taken as being equivalent to the usual thermodynamic entropy.
In particular, we shall assume that the entropy S, as defined by (1.3), takes a maximum value for an isolated
assembly in equilibrium.

These assumptions lead to a consistent and successful relationship between microscopic and macroscopic
descriptions of matter. They may therefore be regarded as justifying themselves in practice. However,
although they are the key to statistical physics, they are in the end just assumptions. We now consider
the way in which we can put them to use.

1.2 Method of the most probable distribution

Introductory courses in statistical physics, are mainly concerned with equilibrium states of isolated assem-
blies. We will find it helpful to begin by considering what is meant by a nonequilibrium state. In this way
we can understand how restrictive the elementary approach actually is.

We continue to discuss our isolated assembly, but for the moment it is not yet fully isolated. We
prepare it in the following way. We heat up some part of the box of gas molecules, in order to create a
nonuniformity. That is, we create a temperature gradient in the box from the hotter part to the colder
parts. Of course there are many ways in which we can create such nonuniformities, but let us for the
present just consider a particular one. If we now isolate the assembly again, then we know that as time

3
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3
goes on the assembly will move to equilibrium. And, it doesn’t matter how we set up this nonuniform
initial state, the assembly will always move to the same equilibrium state. Therefore, (given the values of
few parameters such as temperature, volume and pressure) it is a unique state.

Obviously there is an infinite number of possible initial states, but the essential point is that they
all move to the same universal equilibrium state. If one liked, one could think of the macrostate of the
assembly as being stable with respect to perturbations about equilibrium.

Let us now say a little more about what we mean by all this. If we continue with the example of
a temperature gradient, what this implies is that the temperature obtained from an average over many
molecules in some small part of the box is higher than the temperature obtained from a similar average
over some other part of the box. That is, we do our averages over boxes which are small compared to
the box which contains the assembly, but are large compared to the size of a molecule; and, indeed, large
enough to contain many molecules. This means that individual molecules really have no knowledge as to
whether they are in equilibrium or not. And this is a very important concept. Nonequilibrium conditions
are only to be discovered by some kind of macroscopic examination of the assembly.

As time goes on, molecular collisions will redistribute the extra kinetic energy associated with the
regions of higher temperature. The extra kinetic energy will be shared out so that we end up with a
uniform mean level over the box. At the macroscopic level, we would observe this as the flow of heat
from one point in space to another, at a rate governed by the macroscopic temperature gradient and the
thermal conductivity of the gas. So, by equilibrium we mean that the average (or macroscopic) properties
of the assembly are constant in space and time.

For the particular case of a gas, which is what we are taking as our example, it would nearly always
be possible to detect a nonuniformity, and hence nonequilibrium, by considering the number density of
molecules as a function of position, and noticing that it was different in different parts of the box. So, for
convenience, we will characterise nonequilibrium states by a nonuniform number density. That is, we now
generalize our earlier definition of statistical weight to the nonequilibrium case as

statistical weight ≡ Ω(E,N, V, n(x, t)).

Hence, when the number density n(x, t) is constant and equal to N/V , in the limit of large N and V
(known as the thermodynamic limit), then the assembly has achieved equilibrium.

We can also say that, in the statistical sense, thermal equilibrium is a stationary state of the assembly.
By this we mean that, although the actual molecular motion is not stationary, and the assembly fluctuates
rapidly through its microstates, all mean properties (as established by some form of macroscopic averaging)
are independent of time.

Now the basic idea of statistical mechanics is that the assembly will move from any one of a variety
of initial nonequilibrium states, each characterised by some macroscopic regularity such as a temperature
gradient or a density gradient, to a less constrained equilibrium state. That is to say, by imposing (say)
a temperature gradient on the assembly, we restrict the possibilities open at a microscopic level to that
assembly. Thus, as the assembly moves to equilibrium, the corresponding increase in the entropy may
be interpreted as an increase in the disorder of the assembly (or equally as a decrease in the amount of
information which we have about the microscopic arrangements of the assembly). On this basis, therefore,
it is usual to argue that the equilibrium macrostate is the most probable macrostate, as it is associated
with the largest number of microstates.

On the face of it, we should now choose the most probable distribution of single particle energy states,
in order to maximise the number of microstates. Then we can argue that this ‘most probable distribution’
is the equilibrium distribution. However, in practice it is the logarithm of the number of microstates which
is maximised, and this has the twin merits of both giving the right answer and also corresponding to a
definite physical principle. That is, from the Boltzmann form of the entropy (1.3), maximisation of lnΩ
corresponds to the thermodynamic principle that the entropy of an isolated system will take a maximum
value at equilibrium.

If we carry out this procedure, we end up with the well known Boltzmann distribution, which takes
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over some other part of the box. That is, we do our averages over boxes which are small compared to
the box which contains the assembly, but are large compared to the size of a molecule; and, indeed, large
enough to contain many molecules. This means that individual molecules really have no knowledge as to
whether they are in equilibrium or not. And this is a very important concept. Nonequilibrium conditions
are only to be discovered by some kind of macroscopic examination of the assembly.

As time goes on, molecular collisions will redistribute the extra kinetic energy associated with the
regions of higher temperature. The extra kinetic energy will be shared out so that we end up with a
uniform mean level over the box. At the macroscopic level, we would observe this as the flow of heat
from one point in space to another, at a rate governed by the macroscopic temperature gradient and the
thermal conductivity of the gas. So, by equilibrium we mean that the average (or macroscopic) properties
of the assembly are constant in space and time.
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the form

ps =
exp[εs/kT ]

Z
, (1.4)

where ps is the probability of finding any single particle on energy level εs and the partition function Z is
given by

Z =
∑
s

exp[εs/kT ]. (1.5)

We shall not give details of the derivation as we shall be deriving it by more general methods in the
following sections.

It should be understood that this result is the single-particle distribution function. And, in effect, it
has been obtained by regarding any one particle as being representative, in the sense that we can obtain
its statistics by considering the behaviour of all the other particles. This is a first look at what is called
the ergodic principle.

That is, let us suppose that we took any one particle and followed it around over a sufficiently long
period of time (assuming that we could do such a thing). Then we could build up a picture of its statistical
behaviour in terms of how long it spent on energy level 1, how long it spent on energy level 2, and so on.
In this way we could (in principle) determine its probability distribution among the available energy levels.
Now suppose that instead we took a snapshot of all the particles at one instant of time and constructed
a sort of histogram: so many on energy level 1, so many on energy level 2, and so on. In this way we
can also construct (in principle) a probability distribution for a representative single particle. If these two
distributions are the same, then the assembly is said to be ergodic.

This principle is not easily proved, but for most physical assemblies of interest, it is physically plausible
that it should hold. In succeeding sections we shall develop these ideas further.

1.3 Ensemble of assemblies: relationship between Gibbs and Boltzmann entropies

At this stage, we abandon the concept of the rigorously isolated assembly, in which the total energy E is
constant. Now we should think of an assembly in a heat reservoir, which is held at a constant temperature,
and with which it can exchange energy. Then the energy of the assembly will fluctuate randomly with
time about a time-averaged value E, which will correspond to the macroscopic energy of the assembly
when at the temperature of the heat reservoir.

Or, alternatively, we may imagine a gedankenexperiment in which we have a large number m of N -
particle assemblies, each free to exchange energy with a heat reservoir. Then, at an instant of time, each
assembly will be in a particular state and we can evaluate the mean value of the energy by taking the
value for each of the assemblies, adding them all up, and dividing the sum by m to obtain a value 〈E〉.

It is usual to refer to the assembly of assemblies as an ensemble and hence to call the quantity 〈E〉
the ensemble average of the energy E. Then the assumption of ergodicity, as discussed in the previous
section, is equivalent to the assertion:

E = 〈E〉.

It should be noted that the number of assemblies in the ensemble m is quite arbitrary (although, it is a
requirement in principle that it should be large) and is not necessarily equal to N . In fact it will sometimes
be convenient to make the two numbers the same, although we shall not do that at this stage.

Now consider a formal N-particle representation for each assembly. That is, formally at least, we
assume that any microstate is a solution of the N-body Schrödinger equation. We represent the microstate
corresponding to a quantum number i by the symbolic notation | i〉, and associate with it an energy
eigenvalue Ei, with the probability of the assembly being in this microstate denoted by pi. Then, our
aim is to obtain the probability distribution pi. For the case of stationary equilibrium ensembles, we shall
do this by maximising the entropy, so our immediate task is to generalise Boltzmann’s definition of the
entropy, as given in equation (1.3).

Generalizing our previous specification of an assembly, we consider the ensemble in the state
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• m1 assemblies in state | 1〉

• m2 assemblies in state | 2〉
...

• mi assemblies in state | i〉

We should note that the sum of all the probabilities must be unity, corresponding to dead certainty;
thus we have the condition ∑

i

pi = 1,

with the summation being over all possible values of i.
Bearing in mind that each assembly is a macroscopic object and therefore capable of being labelled,

we work out the number of ways in which we can distribute the m distinguishable assemblies among the
available states. Thus the statistical weight Ωm of the ensemble state is readily found to be:

Ωm =
m!

m1!m2! . . .mi!
. (1.6)

We now invoke the Boltzmann definition of the entropy and apply it to the number of ways in which the
ensemble can be arranged. Denoting the entropy of the ensemble by Sm, we may use equation (1.3) to
write

Sm = k ln Ωm = k lnm!− [k lnm1! + k lnm2! + · · ·+ k lnmi!], (1.7)

where we have substituted from (1.6) for the statistical weight Ωm.
At this stage we resort to Stirling’s formula:

lnm! = m lnm−m,

and application of this yields

Sm = km lnm− km− [k
∑
i

mi lnmi − k
∑
i

mi.] (1.8)

Therefore, as
∑

i mi = m, we may write the total entropy of the ensemble as

Sm = k[m lnm−
∑
i

mi lnmi] = −km
∑
i

pi ln pi, (1.9)

where we have made the substitution mi = pim. However, Sm is the total entropy of the ensemble; that is,
of the m assemblies. Thus, as the entropy is, in the language of thermodynamics, an extensive quantity,
it follows that the entropy of a single assembly within the ensemble is

S = Sm/m = −k
∑
i

pi ln pi, (1.10)

where the sum, is over all possible states | i〉 of the assembly.
Thus the equivalent of maximizing lnΩ for the isolated ensemble, is to maximize the entropy given by

equation (1.10) for a single assembly within the ensemble. This allows us to recast the method of the most
probable distribution into a much clearer, more general and more powerful form. This will be the subject
of the next chapter.
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Stationary ensembles

Chapter 2

Stationary ensembles

In this chapter we work out mean values of quantities such as the energy, and compare them to the results
obtained using thermodynamics. This allows us build a ‘bridge’ between the microscopic and macroscopic
worlds.

In section 1.3, we introduced the idea of an ensemble of similar assemblies. Evidently the properties
of the ensemble are determined by the nature of each constituent assembly. Thus, when we speak of a
stationary ensemble, we mean one that is made up of assemblies which are themselves stationary or steady
in time. Continuing to use the microscopic representation which we introduced in the preceding chapter,
we may express mean values in terms of the probability distribution, in the usual way. For instance, the
mean value of the energy may be written as

E = 〈E〉 =
r∑

i=1

piEi, (2.1)

where pi represents the probability of the assembly being in the state | i〉, such that 1 ≤ i ≤ r, with energy
eigenvalue Ei, and with the probability distribution normalized to one, thus:

r∑
i=1

pi = 1. (2.2)

(It should be noted that, strictly speaking, we have introduced a third kind of average: the expectation
value. However, we shall in general treat all the methods of taking averages as being equivalent, and use
the overbar or angle brackets as convenient in a given situation.) Then, by a stationary assembly, we
mean one in which the mean energy, as given by equation (2.1), is constant with respect to time. Thus,
the assembly (if not isolated) fluctuates between states, with its instantaneous energy Ei varying stepwise
with time. That is, Ei fluctuates randomly about a constant mean value E.

We know from thermodynamics that the entropy of an isolated system (in this case, the ensemble)
always increases, so that any change in the entropy must satisfy the general condition

dS ≥ 0,

so that at thermal (and statistical) equilibrium, the equality applies and our general condition becomes

dS = 0, (2.3)

corresponding to a maximum value of the entropy. The method of finding the most probable distribution
now becomes the method of choosing pi such that the entropy, as given by equation (1.10), is a maximum.
That is, if we vary the distribution by an amount δpi from the most probable value, the corresponding
change in the entropy must satisfy the equation

dS/dpi = 0. (2.4)

Thus, we find the most probable distribution by solving equation (2.4), subject to any constraints which
are applied to the assembly.
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72.1 Types of ensemble

As we have seen, the nature of the ensemble is determined by the nature of its constituent assemblies. A
stationary ensemble is made up of stationary assemblies. The imposition of other constraints, in addition
to stationarity, determines the type of ensemble, and we shall make a brief digression in order to define
the three principal ensembles which will be considered this book. We list these as follows:

1. Microcanonical ensemble (mce): fixed E and N
In this case, the assembly is closed and isolated. As an example, one could think of a perfect gas
at STP in a macroscopic box with insulating walls, so that heat cannot flow either in or out. This
means that the assembly is constrained to have a fixed total energy and a fixed number of particles.
Although the assembly will fluctuate (because of molecular collisions) through its microstates, all
microstates have the same eigenvalue, the constant energy. Thus, in quantum mechanical terms, this
situation is enormously degenerate, with

Ei = E = E.

It is, of course, our old friend the isolated system.

2. Canonical ensemble (CE): fixed E and N
Here the assembly is closed but not isolated. It is free to exchange energy with its surroundings. As
an example, one could again think of a perfect gas in a box, but now the walls do not impede the
flow of heat in or out. Thus the energy of an individual assembly Ei fluctuates about the mean value
E, which is fixed.

3. Grand canonical ensemble (GCE): fixed E and N
Lastly, we consider an assembly which is neither closed nor isolated. In order to continue with our
specific example, we could think of a perfect gas in a box with permeable walls, so that both the
total energy and the total number of particles in the assembly can fluctuate about fixed mean values.
More realistically perhaps, we could imagine the grand canonical ensemble as consisting of a large
volume of gas (e.g. a room full of air), notionally divided up into many small (but still macroscopic!)
volumes. Then the GCE would allow us to examine fluctuations of particle number in one such
volume relative to the others. However, it should be emphasized from the outset that the GCE is of
immense practical importance, particularly in those quantum systems where particle number is not
conserved and in chemical reactions where the number of particles of a particular chemical species
will generally be variable.

In the next section, we shall carry out a general procedure for finding the probability distribution which
can be applied to any one of these stationary ensembles.

2.2 Variational method for the most probable distribution

Formally we now set up our variational procedure. From equation (1.10) for the entropy and equation
(2.4) for the equilibrium condition, we obtain the equation

dS = −k
∑
i

{ln pi + 1} = 0, (2.5)

which must be solved for pi, subject to the various constraints imposed on the assembly. In addition to
the requirement (which applies to all cases) that the distribution must be normalized to unity, we shall
assume for generality that the assembly is subject to the additional constraint that two associated mean
values x and y, say, are invariants. Evidently x and y can stand for any macroscopic variable such as
energy, pressure, or particle number. Thus, we summarize our constraints in general as:

∑
i

pi = 1, (2.6)
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2.1 Types of ensemble

As we have seen, the nature of the ensemble is determined by the nature of its constituent assemblies. A
stationary ensemble is made up of stationary assemblies. The imposition of other constraints, in addition
to stationarity, determines the type of ensemble, and we shall make a brief digression in order to define
the three principal ensembles which will be considered this book. We list these as follows:

1. Microcanonical ensemble (mce): fixed E and N
In this case, the assembly is closed and isolated. As an example, one could think of a perfect gas
at STP in a macroscopic box with insulating walls, so that heat cannot flow either in or out. This
means that the assembly is constrained to have a fixed total energy and a fixed number of particles.
Although the assembly will fluctuate (because of molecular collisions) through its microstates, all
microstates have the same eigenvalue, the constant energy. Thus, in quantum mechanical terms, this
situation is enormously degenerate, with

Ei = E = E.

It is, of course, our old friend the isolated system.

2. Canonical ensemble (CE): fixed E and N
Here the assembly is closed but not isolated. It is free to exchange energy with its surroundings. As
an example, one could again think of a perfect gas in a box, but now the walls do not impede the
flow of heat in or out. Thus the energy of an individual assembly Ei fluctuates about the mean value
E, which is fixed.

3. Grand canonical ensemble (GCE): fixed E and N
Lastly, we consider an assembly which is neither closed nor isolated. In order to continue with our
specific example, we could think of a perfect gas in a box with permeable walls, so that both the
total energy and the total number of particles in the assembly can fluctuate about fixed mean values.
More realistically perhaps, we could imagine the grand canonical ensemble as consisting of a large
volume of gas (e.g. a room full of air), notionally divided up into many small (but still macroscopic!)
volumes. Then the GCE would allow us to examine fluctuations of particle number in one such
volume relative to the others. However, it should be emphasized from the outset that the GCE is of
immense practical importance, particularly in those quantum systems where particle number is not
conserved and in chemical reactions where the number of particles of a particular chemical species
will generally be variable.

In the next section, we shall carry out a general procedure for finding the probability distribution which
can be applied to any one of these stationary ensembles.

2.2 Variational method for the most probable distribution

Formally we now set up our variational procedure. From equation (1.10) for the entropy and equation
(2.4) for the equilibrium condition, we obtain the equation

dS = −k
∑
i

{ln pi + 1} = 0, (2.5)

which must be solved for pi, subject to the various constraints imposed on the assembly. In addition to
the requirement (which applies to all cases) that the distribution must be normalized to unity, we shall
assume for generality that the assembly is subject to the additional constraint that two associated mean
values x and y, say, are invariants. Evidently x and y can stand for any macroscopic variable such as
energy, pressure, or particle number. Thus, we summarize our constraints in general as:

∑
i

pi = 1, (2.6)

8〈x〉 =
∑
i

pixi = x, (2.7)

and
〈y〉 =

∑
i

piyi = y. (2.8)

In order to handle the constraints, we make use of Lagrange’s method of undetermined multipliers. We
illustrate the general approach by considering the first constraint: the normalization requirement in (2.6).
If we vary the righthand side of (2.6), it is obvious that the variation of a constant gives zero, thus:

d
∑
i

pi = 0. (2.9)

On the other hand, if we make the variation pi → pi + dpi inside the summation, then we have

∑
i

(pi + dpi) = 1 ⇒
∑
i

dpi = 0. (2.10)

In other words, if we make changes to the individual probabilities that specific levels will be occupied, then
the sum of these changes must add up to zero in order to preserve the normalization of the distribution.

It follows then, that we are free to subtract

λ0d
∑
i

pi = λ0

∑
i

dpi = 0, (2.11)

where λ0 is a multiplier which is to be determined, from the middle term of equation (2.5) without effect.
This procedure goes through for our two general constraints as well. It should be borne in mind that

varying the distribution of the way assemblies are distributed among the permitted states does not affect
the eigenvalues associated with those states. Formally, therefore, we introduce the additional Lagrange
multipliers λx and λy, so that equation (2.5) can be rewritten in the form

∑
i

{−k(1 + ln pi)− λ0 − λxxi − λyyi}dpi = 0. (2.12)

As this relation holds for abitrary states | i〉, it follows that the expression in curly brackets must vanish.
Which further implies that the required distribution must take the form:

pi = exp(−1− λ0/k) exp(−[λxxi + λyyi]/k). (2.13)

The prefactor is now chosen to ensure that the distribution satisfies the normalization requirement (2.6),
thus:

exp(−1− λ0/k) =
1∑

i exp(−[λxxi + λyyi/k])
=

1

Z
, (2.14)

where Z is the partition function. Clearly this procedure is equivalent to fixing a value for the Lagrange
multiplier λ0. The other two multipliers are to be determined when we decide on a particular ensemble.
At this stage, therefore, our general form of the probability of an assembly being in state | i〉 is

pi =
exp(−[λxxi + λyyi]/k)

Z
. (2.15)

It can be readily verified that the assembly invariants are related to their corresponding Lagrange multi-
pliers by

〈x〉 = −k∂ lnZ/∂λx, (2.16)

〈y〉 = −k∂ lnZ/∂λy. (2.17)
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∑
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If we vary the righthand side of (2.6), it is obvious that the variation of a constant gives zero, thus:
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λ0d
∑
i

pi = λ0

∑
i

dpi = 0, (2.11)

where λ0 is a multiplier which is to be determined, from the middle term of equation (2.5) without effect.
This procedure goes through for our two general constraints as well. It should be borne in mind that

varying the distribution of the way assemblies are distributed among the permitted states does not affect
the eigenvalues associated with those states. Formally, therefore, we introduce the additional Lagrange
multipliers λx and λy, so that equation (2.5) can be rewritten in the form

∑
i

{−k(1 + ln pi)− λ0 − λxxi − λyyi}dpi = 0. (2.12)

As this relation holds for abitrary states | i〉, it follows that the expression in curly brackets must vanish.
Which further implies that the required distribution must take the form:

pi = exp(−1− λ0/k) exp(−[λxxi + λyyi]/k). (2.13)

The prefactor is now chosen to ensure that the distribution satisfies the normalization requirement (2.6),
thus:

exp(−1− λ0/k) =
1∑

i exp(−[λxxi + λyyi/k])
=

1

Z
, (2.14)

where Z is the partition function. Clearly this procedure is equivalent to fixing a value for the Lagrange
multiplier λ0. The other two multipliers are to be determined when we decide on a particular ensemble.
At this stage, therefore, our general form of the probability of an assembly being in state | i〉 is

pi =
exp(−[λxxi + λyyi]/k)

Z
. (2.15)

It can be readily verified that the assembly invariants are related to their corresponding Lagrange multi-
pliers by

〈x〉 = −k∂ lnZ/∂λx, (2.16)

〈y〉 = −k∂ lnZ/∂λy. (2.17)
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〈x〉 =
∑
i

pixi = x, (2.7)

and
〈y〉 =

∑
i

piyi = y. (2.8)

In order to handle the constraints, we make use of Lagrange’s method of undetermined multipliers. We
illustrate the general approach by considering the first constraint: the normalization requirement in (2.6).
If we vary the righthand side of (2.6), it is obvious that the variation of a constant gives zero, thus:

d
∑
i

pi = 0. (2.9)

On the other hand, if we make the variation pi → pi + dpi inside the summation, then we have

∑
i

(pi + dpi) = 1 ⇒
∑
i

dpi = 0. (2.10)

In other words, if we make changes to the individual probabilities that specific levels will be occupied, then
the sum of these changes must add up to zero in order to preserve the normalization of the distribution.

It follows then, that we are free to subtract

λ0d
∑
i

pi = λ0

∑
i

dpi = 0, (2.11)

where λ0 is a multiplier which is to be determined, from the middle term of equation (2.5) without effect.
This procedure goes through for our two general constraints as well. It should be borne in mind that

varying the distribution of the way assemblies are distributed among the permitted states does not affect
the eigenvalues associated with those states. Formally, therefore, we introduce the additional Lagrange
multipliers λx and λy, so that equation (2.5) can be rewritten in the form

∑
i

{−k(1 + ln pi)− λ0 − λxxi − λyyi}dpi = 0. (2.12)

As this relation holds for abitrary states | i〉, it follows that the expression in curly brackets must vanish.
Which further implies that the required distribution must take the form:

pi = exp(−1− λ0/k) exp(−[λxxi + λyyi]/k). (2.13)

The prefactor is now chosen to ensure that the distribution satisfies the normalization requirement (2.6),
thus:

exp(−1− λ0/k) =
1∑

i exp(−[λxxi + λyyi/k])
=

1

Z
, (2.14)

where Z is the partition function. Clearly this procedure is equivalent to fixing a value for the Lagrange
multiplier λ0. The other two multipliers are to be determined when we decide on a particular ensemble.
At this stage, therefore, our general form of the probability of an assembly being in state | i〉 is

pi =
exp(−[λxxi + λyyi]/k)

Z
. (2.15)

It can be readily verified that the assembly invariants are related to their corresponding Lagrange multi-
pliers by

〈x〉 = −k∂ lnZ/∂λx, (2.16)

〈y〉 = −k∂ lnZ/∂λy. (2.17)

92.3 Canonical ensemble

We now apply the above results to an assembly in which the mean energy is fixed but the instantaneous
energy can fluctuate. Then, by considering a simple thermodynamic process and comparing the microscopic
and macroscopic formulations, we show that k can be identified as the Boltzmann constant; and the general
equivalence of micro and macro formulations is established.

Now the particle number is the same for every assembly in the ensemble and is therefore constant with
respect to the variational process. So, it is worth observing that a constraint of this type is essentially
trivial. Suppose, in general, that y is any macroscopic variable which does not depend on the state of the
assembly. Then we have for its expectation value,

〈y〉 =
∑
i

ypi = y
∑
i

pi,

and when we make the variation in pi this yields the condition

y
∑
i

dpi = 0.

It may be readily verified, by rederiving equation (2.14) for this case, that λy may be absorbed into λ0 when
we set the normalization. In effect this means, that when y is independent of the state of the assembly,
we may take λy = 0.

In the canonical ensemble, the only nontrivial constraint is on the energy. Accordingly, we put x = E
and λy = 0 in equations (2.15) and (2.14) to obtain

pi =
exp [−λEEi/k]

Z
, (2.18)

with partition function Z given by

Z =
∑
i

exp[−λEEi/k]. (2.19)

Also, from equation (2.16), we have the mean energy of the assembly as

E = −k∂ lnZ/∂λE. (2.20)

2.4 Compression of a perfect gas

As an example of a simple thermodynamical process, let us consider the compression of a perfect gas by
means of a piston sliding in a cylinder, say. It is, of course, usual in thermodynamics to consider the
important special cases of adiabatic and isothermal compressions. But, for our present purposes, we do
not need to be so restrictive. We can describe the relationship between the macroscopic variables during
such a process by invoking the combined first and second laws of thermodynamics, thus:

dE = TdS − PdV. (2.21)

It should be noted that for a compression, the volume change is negative, and so the pressure work term
is positive, indicating that work is done on the gas by the movement of the piston.

Now let us use our statistical approach to derive the equivalent law from microscopic considerations.
Equation (2.1) gives us our microscopic definition of the total energy of an assembly. From quantum
mechanics, we know that changing the volume of the ‘box’ must change the energy levels and also the
probability of the occupation of any level. It follows therefore that the change dV must give rise to a
change in the mean energy, and from (2.1) this is

dE =
∑
i

Eidpi +
∑
i

pidEi. (2.22)
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2.3 Canonical ensemble

We now apply the above results to an assembly in which the mean energy is fixed but the instantaneous
energy can fluctuate. Then, by considering a simple thermodynamic process and comparing the microscopic
and macroscopic formulations, we show that k can be identified as the Boltzmann constant; and the general
equivalence of micro and macro formulations is established.

Now the particle number is the same for every assembly in the ensemble and is therefore constant with
respect to the variational process. So, it is worth observing that a constraint of this type is essentially
trivial. Suppose, in general, that y is any macroscopic variable which does not depend on the state of the
assembly. Then we have for its expectation value,

〈y〉 =
∑
i

ypi = y
∑
i

pi,

and when we make the variation in pi this yields the condition

y
∑
i

dpi = 0.

It may be readily verified, by rederiving equation (2.14) for this case, that λy may be absorbed into λ0 when
we set the normalization. In effect this means, that when y is independent of the state of the assembly,
we may take λy = 0.

In the canonical ensemble, the only nontrivial constraint is on the energy. Accordingly, we put x = E
and λy = 0 in equations (2.15) and (2.14) to obtain

pi =
exp [−λEEi/k]

Z
, (2.18)

with partition function Z given by

Z =
∑
i

exp[−λEEi/k]. (2.19)

Also, from equation (2.16), we have the mean energy of the assembly as

E = −k∂ lnZ/∂λE. (2.20)

2.4 Compression of a perfect gas

As an example of a simple thermodynamical process, let us consider the compression of a perfect gas by
means of a piston sliding in a cylinder, say. It is, of course, usual in thermodynamics to consider the
important special cases of adiabatic and isothermal compressions. But, for our present purposes, we do
not need to be so restrictive. We can describe the relationship between the macroscopic variables during
such a process by invoking the combined first and second laws of thermodynamics, thus:

dE = TdS − PdV. (2.21)

It should be noted that for a compression, the volume change is negative, and so the pressure work term
is positive, indicating that work is done on the gas by the movement of the piston.

Now let us use our statistical approach to derive the equivalent law from microscopic considerations.
Equation (2.1) gives us our microscopic definition of the total energy of an assembly. From quantum
mechanics, we know that changing the volume of the ‘box’ must change the energy levels and also the
probability of the occupation of any level. It follows therefore that the change dV must give rise to a
change in the mean energy, and from (2.1) this is

dE =
∑
i

Eidpi +
∑
i

pidEi. (2.22)

10Evidently we wish to get this equation into a form in which it can be usefully compared with equation
(2.21). The second term on the RHS can be got into the requisite form immediately. Recalling that dV is
negative, we can write (2.22) as

dE =
∑
i

Eidpi −
∑
i

pi
∂Ei

∂V
dV. (2.23)

Obviously the second term now gives us a microscopic expression for the thermodynamic pressure, but we
shall defer the formal comparison until we have dealt with the first term, which of course we wish to relate
to TdS. We do this in a less direct way, by deriving a microscopic expression for the change in entropy
dS.

Intuitively, we associate the change in entropy through equation (1.10) with the change in the proba-
bility distribution, and this may be expressed mathematically as

dS =
∑
i

∂S

∂pi
dpi = −k

∑
i

ln pidpi, (2.24)

where we have invoked equation (1.10) for S and the normalization condition in the form
∑

i dpi = 0.
By substituting from (2.18) for pi, and again using the condition

∑
i dpi = 0, we may further write our

expression for the change in the entropy as

dS = λE

∑
i

Eidpi, (2.25)

which, with a little rearrangement, allows us to rewrite the first term on the RHS of (2.23), which then
becomes

dE =
dS

λE

+

(∑
i

pi
∂Ei

∂V

)
dV. (2.26)

Comparison with the thermodynamic expression for the change in mean energy, as given by equation
(2.21), then yields the Lagrange multiplier as

λE = 1/T, (2.27)

along with an expression for the thermodynamic pressure P in terms of the microscopic description, thus

P = −
∑
i

pi∂Ei/∂V. (2.28)

The latter equation can be used to introduce the instantaneous pressure Pi, such that the mean pressure
takes the form

P =
∑
i

piPi, (2.29)

from which it follows that the instantaneous pressure is given by

Pi = −∂Ei/∂V. (2.30)

2.4.1 Other thermodynamic processes

The above procedure can be generalized to any macroscopic process in which work is done such that the
mean energy of the assembly remains constant. For instance, a variation in the magnetic field acting on
a ferromagnet, will do work on the magnet and in the process increase its internal energy. Accordingly,
we may extend the above analysis to more complicated systems by writing the combined first and second
laws as

dE = TdS +
∑
α

Hαdhα, (2.31)
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Evidently we wish to get this equation into a form in which it can be usefully compared with equation
(2.21). The second term on the RHS can be got into the requisite form immediately. Recalling that dV is
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Eidpi −
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∂Ei
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dV. (2.23)

Obviously the second term now gives us a microscopic expression for the thermodynamic pressure, but we
shall defer the formal comparison until we have dealt with the first term, which of course we wish to relate
to TdS. We do this in a less direct way, by deriving a microscopic expression for the change in entropy
dS.

Intuitively, we associate the change in entropy through equation (1.10) with the change in the proba-
bility distribution, and this may be expressed mathematically as

dS =
∑
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∂S

∂pi
dpi = −k
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ln pidpi, (2.24)

where we have invoked equation (1.10) for S and the normalization condition in the form
∑

i dpi = 0.
By substituting from (2.18) for pi, and again using the condition

∑
i dpi = 0, we may further write our

expression for the change in the entropy as

dS = λE

∑
i

Eidpi, (2.25)

which, with a little rearrangement, allows us to rewrite the first term on the RHS of (2.23), which then
becomes

dE =
dS

λE

+

(∑
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pi
∂Ei

∂V

)
dV. (2.26)

Comparison with the thermodynamic expression for the change in mean energy, as given by equation
(2.21), then yields the Lagrange multiplier as

λE = 1/T, (2.27)

along with an expression for the thermodynamic pressure P in terms of the microscopic description, thus

P = −
∑
i

pi∂Ei/∂V. (2.28)

The latter equation can be used to introduce the instantaneous pressure Pi, such that the mean pressure
takes the form

P =
∑
i

piPi, (2.29)

from which it follows that the instantaneous pressure is given by

Pi = −∂Ei/∂V. (2.30)

2.4.1 Other thermodynamic processes

The above procedure can be generalized to any macroscopic process in which work is done such that the
mean energy of the assembly remains constant. For instance, a variation in the magnetic field acting on
a ferromagnet, will do work on the magnet and in the process increase its internal energy. Accordingly,
we may extend the above analysis to more complicated systems by writing the combined first and second
laws as

dE = TdS +
∑
α

Hαdhα, (2.31)
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where Hα is any thermodynamic force (e.g. pressure exerted on a gas, or the magnetic field) applied
to a specimen of some material, and hα is the corresponding displacement, such as volume of gas or
magnetisation of a specimen.

If, for example, we take H1 = P and h1 = −V , and assume that no other thermodynamic forces act
on the system, then we recover equation (2.21). Evidently the analyis which led to equation (2.28), for
the macroscopic pressure, can be used again to lead from equation (2.31) to the more general result

Hα =
∑
i

pi∂Ei/∂hα. (2.32)

of which equation (2.28) is a special case.

2.4.2 Equilibrium distribution and the bridge equations

With the identification of the Lagrange multiplier as the inverse absolute temperature, we may now write
equation (2.18) for the equilibrium probability distribution of the canonical ensemble in the explicit form

pi =
exp[−Ei/kT ]

Z
, (2.33)

with the partition function Z given by

Z =
∑
i

exp[−Ei/kT ]. (2.34)

From equation (2.20), we may write the explicit form for the mean energy of the assembly

E = kT 2∂ lnZ/∂T. (2.35)

In the language of quantum mechanics, this is the equilibrium distribution function for the canonical
ensemble ‘in the energy representation’, as our quantum description of an assembly is based on the energy
eigenvalues available to it. We may also introduce other thermodynamic potentials in addition to the
total energy E, by substituting the above form for pi into equation (1.10) to obtain an expression for the
entropy in terms of the partition function and the mean energy, thus:

S = k lnZ + E/T. (2.36)

Or, introducing the Helmholtz free energy F by means of the usual thermodynamic relation F = E − TS,
we may rewrite the above equation as

F = −kT lnZ. (2.37)

This latter result is often referred to as a ‘bridge equation’, as it provides a bridge between the microscopic
and macroscopic descriptions of an assembly. The basic procedure of statistical physics is essentially to
obtain an expression for the partition function from purely microscopic considerations, and then to use
the bridge equation to obtain the thermodynamic free energy.

We finish off the work of this section by noting the convenient contraction

β =
1

kT
. (2.38)

We shall use this abbreviation from time to time, when it is convenient to do so.

12

Download free eBooks at bookboon.com



Study notes for Statistical Physics:  
A concise, unified overview of the subject

25 

Stationary ensembles

2.4.3 Fluctuations in the energy of the assembly

The energy of a specific assembly in the canonical ensemble fluctuates randomly about the fixed mean
value E. We are now in a position to assess the magnitude of these fluctuations, although at this stage
we shall go about this in a rather indirect way. Let us at least begin directly. As before, we denote the
energy of a particular assembly in the ith realization by Ei. Then the fluctuation of the ith realization
from the mean is given by

∆Ei = Ei − E. (2.39)

If we then square the fluctuation, and take averages, we obtain the mean-square fluctuation as

〈(∆Ei)
2〉 = 〈E2

i 〉 − 〈Ei〉2. (2.40)

Now we wish to estimate the size of the mean-square fluctuation, and this is where we take an indirect
route. Let us work out the heat capacity at constant volume from our microscopic formulation. The
defining relationship from thermodynamics is

CV = (∂E/∂T )V =
∂

∂T

∑
i

piEi, (2.41)

where the second equality follows from equation (2.1). Then, substituting from equation (2.33), and
performing the differentiation with respect to the absolute temperature, we obtain

CV =
1

kT 2
[〈E2〉 − 〈E〉2]. (2.42)

Comparison of this result with equation (2.40) yields an explicit expression for the mean-square fluctuation,
and taking the square-root of both sides leads to an expression for the root-mean-square fluctuation ∆Erms

as
∆Erms = (kT 2CV )

1/2. (2.43)

Evidently the relative rms fluctuation may be written as

∆Erms

E
=

√
kT 2CV

E
∼ 1

N1/2
, (2.44)

where the last step follows from the fact that both 〈E〉 and CV are extensive quantities and therefore
depend on N . For Avogadro-sized assemblies, we have N ∼ 1024 and hence the relative fluctuation in the
energy has a root-mean-square value of about ∼ 10−12.

2.5 The Grand Canonical Ensemble (GCE)

We now extend the preceding ideas to a more general case: an assembly where the number N of particles
can fluctuate about a mean value N . Such fluctuations are in addition to the fluctuations in energy due
to exchange with the surroundings. An ensemble of such assemblies is known as the grand canonical
ensemble. This concept has widespread application in statistical physics. Evidently it is of relevance in
any statistical problem where the particle number is not an invariant. For example, we could visualize such
an ensemble by imagining a large volume of gas (e.g. a room) divided into many imaginary subvolumes
(i.e. each about a millilitre). Then each subvolume would comprise an assembly and would be free to
exchange both energy and particles with other assemblies.

Clearly if an assembly gains some particles it also gains some kinetic energy, and conversely. It is usual
in thermodynamics to formalize this aspect by introducing the chemical potential µ, such that

µ =

(
∂E

∂N

)

S,V

, (2.45)
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where the variation, as indicated, is carried out at constant entropy and volume. Once we know this
quantity, then we can calculate the amount of energy brought into the assembly by an increase in the
number of particles. Also, as well as transfers of this kind in a gas, the particle number in an assembly
can fluctuate due to chemical reactions, which lead to a change in the number of particles of a particular
chemical species in an assembly.

In order to generalize the microscopic formulation to the grand canonical ensemble, we note that for
any one assembly E and N can vary, whereas E and N are fixed. Thus for an assembly containing N
particles, we generalize the probability distribution pi to take the form pi,N , where

pi,N ≡ the probability that the assembly will be in the state identified by the ith eigenstate
of the N -body Schrödinger equation. The actual energy of the assembly will be given by the
associated eigenvalue, Ei,N .

As before, we invoke the general distribution (2.15). This time we have two constraints (in addition to the
normalization). First, as in the canonical ensemble, we have the constraint on the mean energy, but this
now takes the form

E =
∑
i,N

pi,NEi,N , (2.46)

where the sum is over assemblies and is therefore over N as well as i. Second, we have the constraint on
the mean particle number

N =
∑
i,N

pi,NN. (2.47)

With these constraints, we associate as before Lagrange multipliers, which in this case we denote by λE

and λN . Thus we may take over (2.15) in the form

pi,N =
exp(−[λEEi,N + λNN ]/k)

ZGCE

, (2.48)

where ZGCE is the partition function for the grand canonical ensemble and is given by

ZGCE =
∑
i,N

exp(−[λEEi,N + λNN ]/k). (2.49)

Now we have to identify the Lagrange multipliers and hence make the connection with macroscopic physics.
Not surprisingly, we do this by a generalization of the method used in the canonical ensemble.

2.5.1 Identification of the Lagrange multipliers

Let us consider a macroscopic assembly upon which we do work by means of a compression, leading to
an increase in its internal energy. We also increase its internal energy by increasing the mean number of
particles present (by means of a chemical reaction, for instance). That is, we make the changes V → V −dV
and N → N + dN . Then the thermodynamic description of this process is given by the appropriate
generalization of the combined first and second laws, thus:

dE = TdS − PdV + µdN, (2.50)

where the chemical potential µ is as defined by equation (2.45).
Now we work out the corresponding change in the mean energy from microscopic considerations. The

reasoning involved is just a generalization of that presented in the case of the canonical ensemble. Changing
the macroscopic variables V and N changes (via the Schrödinger equation) the energy eigenvalues and the
probability of a particular state being occupied. Thus, differentiating equation (2.46 with respect to the
changes in pi,N and Ei,N leads to the result

dE =
∑
i,N

Ei,Ndpi,N +
∑
i,N

pi,NdEi,N . (2.51)

14

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Study notes for Statistical Physics:  
A concise, unified overview of the subject

27 

Stationary ensembles
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Now we work out the corresponding change in the mean energy from microscopic considerations. The

reasoning involved is just a generalization of that presented in the case of the canonical ensemble. Changing
the macroscopic variables V and N changes (via the Schrödinger equation) the energy eigenvalues and the
probability of a particular state being occupied. Thus, differentiating equation (2.46 with respect to the
changes in pi,N and Ei,N leads to the result

dE =
∑
i,N

Ei,Ndpi,N +
∑
i,N

pi,NdEi,N . (2.51)

14With the usual rules for differentiation in the second term on the rhs, this may be further written as

dE =
∑
i,N

Ei,Ndpi,N +
∑
i,N

pi,N
∂Ei,N

∂V
dV, (2.52)

whereupon comparison with equation (2.50) yields an expression for the mean pressure of the assembly.
However, we shall defer this step for the moment, as we first need to deal with the first term on the

rhs of (2.52). Once again, we generalise the procedures used for the canonical ensemble. From equation
(1.10), we obtain an expression relating the change in entropy to the change in the probability distribution.
Noting that this variation must be carried out at constant V and N , we obtain

dS = −k
∑
i,N

ln pi,N dpi,N , (2.53)

and with the substitution of the GCE probability distribution from (2.48), this becomes

dS =
∑
i,N

[λEEi,N + λNN ]dpi,N . (2.54)

We may take this further by noting that, in these circumstances, any change in the mean number of
particles in an assembly must be due to a change in the probability distribution. Thus, from equation
(2.47), we have

dN =
∑
i,N

Ndpi,N , (2.55)

and equation (2.54) becomes

dS = λE

∑
i,N

Ei,Ndpi,N + λNdN. (2.56)

Then, with some rearrangement of this equation, we can substitute for the second term on the rhs of
equation (2.52) for dE, to obtain

dE =
dS

λE

− λN

λE

dN +
∑
i,N

pi,N

(
∂Ei,N

∂V

)
dV. (2.57)

Now we compare this result with the macroscopic expression as given by equation (2.50). The result
is the following set of identifications:

λE = 1/T ; (2.58)

λN = −µ/T ; (2.59)

and

P = −
∑
i,N

(
∂Ei,N

∂V

)
pi,N . (2.60)

Hence, substituting for the two Lagrange multipliers in equation (2.48) for pi,N , we obtain the explicit
form of the grand canonical probability distribution as

pi,N =
exp(−[Ei,N − µN ]/kT )

ZGCE

, (2.61)

where the partition function is given by

ZGCE =
∑
i,N

exp(−[Ei,N − µN ]/kT ). (2.62)

It is instructive to compare this result with the corresponding result for the canonical ensemble, as given
by equation (2.33), and note the new presence of the potential energy term associated with the chemical
potential.
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by equation (2.33), and note the new presence of the potential energy term associated with the chemical
potential.

152.5.2 Thermodynamic relationships

Our main aim now is to obtain the bridge equation (analogous to equation (2.37)) for the grand canonical
ensemble. In the process, we shall obtain a number of useful relationships. We begin by working out an
expression for the entropy. Substituting (2.61) into equation (1.10), we obtain

S = k lnZGCE + E/T − µN/T. (2.63)

Then, we introduce two quantities from thermodynamics. First, we introduce the Gibbs free energy G,
such that

G = µN = E − TS + PV. (2.64)

It should be noted that the Gibbs free energy G in the grand canonical ensemble is analogous to the
Helmholtz free energy F in the canonical ensemble. Second, we introduce the grand potential Ω, such
that:

Ω = E − TS − µN

= −PV. (2.65)

Now, multiply both sides of the expression for the entropy by T and rearrange to obtain:

E − TS − µN = −PV, (2.66)

and comparison with the preceding equation immediately yields

Ω = −kT lnZGCE, (2.67)

which is the required bridge equation for the grand canonical ensemble.
Lastly, expressing equation (2.65) for Ω in differential form

dΩ = −SdT − PdV −Ndµ, (2.68)

we may immediately obtain some useful thermodynamic relationships, as follows:

S = −(∂Ω/∂T )V,µ ; (2.69)

P = −(∂Ω/∂V )T,µ ; (2.70)

and
N = −(∂Ω/∂µ)T,V . (2.71)

2.5.3 Density fluctuations

As time goes on, the number of particles in each assembly in the grand canonical ensemble will fluctuate
about the mean value N . We can obtain an indication of the significance of such fluctuations by deriving
an expression for the rms value of the fluctuation ∆N = N −N . As in the case of the energy fluctuations
in the canonical ensemble, we approach this indirectly. However, intuitively, we can see that the last
relationship of the previous section gives us an expression for N , and logically this provides us with a line
of attack.

Differentiate both sides of equation (2.71) to obtain

(∂2Ω/∂µ2)T,V = −(∂N/∂µ)T,V = −
∑
i,N

N(∂pi,N/∂µ)T,V , (2.72)

where the last step follows from equation (2.47).
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The problem now is to find a helpful way of re-expressing the last term above, and we tackle this by
means of a simple identity from the calculus, viz.,

1

y

∂y

∂x
=

∂ ln y

∂x
,

where y is a function of x. Rewriting this in terms of pi,N , we have

1

pi,N

(
∂pi,N
∂µ

)

T,V

=

(
∂ ln pi,N

∂µ

)

T,V

= βN −
(
∂ lnZGCE

∂µ

)

T,V

, (2.73)

where we have substituted from equation (2.61) for pi,N , and β = 1/kT . Then, from the bridge equation
(2.67), and using equation (2.71) we find

1

pi,N

(
∂pi,N
∂µ

)

T,V

= β(N −N). (2.74)

Hence, we may write: (
∂pi,N
∂µ

)

T,V

= pi,Nβ(N −N), (2.75)

and, substituting this into the extreme rhs of equation (2.72) yields

(∂2Ω/∂µ2)T,V =
∑
i,N

pi,Nβ(N −N) = −β〈∆N2〉. (2.76)

Thus, from this result and from equation (2.71) we obtain for the relative fluctuation

〈∆N2〉1/2

N
=

−
√
kT (∂2Ω/∂µ2)T,V
−(∂Ω)/∂µ)T,V

∼ 1√
N
. (2.77)
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Chapter 3

Examples of stationary ensembles

Interactions between particles can make it difficult to evaluate the partition function for an assembly,
irrespective of whether it is in the canonical ensemble or the grand canonical ensemble. Indeed, in general
this can only be done as an approximation and we shall look at some methods of doing this in later
sections dealing with coupled particles. Here we begin with assemblies of particles which can be treated as
if they do not interact with each other. Of course, in a quantum mechanical treatment, particles cannot
be strictly independent, but it should be clear that what we are ruling out for the moment is any strong
interaction such as a mutual coulomb potential.

3.1 Assembly of distinguishable particles

Consider N identical particles situated on a regular lattice in three dimensions. For example, we could
be concerned with an array of spins making up a macroscopic piece of magnetic material. The ensemble
consists of many such pieces of magnetic material and it follows that if we specify Particle 1 in Assembly
1 to be at the point (0,0,0), then we can specify Particle 1 in Assembly 2 to be at the point (0,0,0) in
that lattice, Particle 1 in Assembly 3, and so on. In other words, each particle has an address within its
assembly and is therefore distinguishable.

Under these circumstances, each particle will have access to its own spectrum of states. We can specify
any particular realization of the assembly (i.e. microstate | i〉) as follows:

• Particle 1 is in state i1 with energy εi1

• Particle 2 is in state i2 with energy εi2
...

• Particle N is in state iN with energy εiN

That is, the microstate of the assembly is specified by the set of labels {i1, i2, . . . iN}. The corresponding
energy eigenvalue for the assembly is therefore

Ei = εi1 + εi2 + · · ·+ εiN . (3.1)

It should be noted that this simple result depends on the fact that the particles do not interact. As we are
allowing the energy of an assembly to vary, we are in effect assuming that it is a member of a canonical
ensemble. Accordingly we invoke equation (2.34) for the partition function, and substituting from equation
(3.1), we obtain the partition function of N distinguishable particles as

Zdis =
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i1,i2...iN

exp−[εi1 + εi2 + · · ·+ εiN ]/kT . (3.2)

Each of these summations runs over all the assemblies in the ensemble, and of course this operation is
only possible because the particles are distinguishable and therefore we can identify the corresponding
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particle in each assembly. The subscript ‘dis’ indicates that the partition function is for an assembly of
distinguishable particles. Using the properties of the exponential, we can factorize this result as

Zdis = (Z1)
N , (3.3)

where Z1 is the single-particle partition function and is given by

Z1 =
∑
j

exp [−εj/kT ]. (3.4)

Note that the j is a dummy index and stands for any one of the set {i1, i2, . . . iN}. It may also be noted
that Z1, as defined by equation (3.4), is sometimes referred to as the micro-canonical partition function.

The thermodynamic properties of the assembly now follow quite straightforwardly from the use of the
bridge equation (2.37). Substituting from above for Zdis, we obtain

F = −kT lnZdis = −NkT lnZ1, (3.5)

which is of course just the result that one obtains from the microcanonical ensemble in elementary treat-
ments of the subject.

As a corollary, we should point out that this result for the canonical ensemble contains the single-
particle probability distribution. That is, if we make the definition:

pj ≡ the probability of finding a particular particle (which belongs to the assembly) in a specific
state j;

then this probability is given by,

pj =
exp [−εj/kT ]

Z1

, (3.6)

which is, of course, just the Boltzmann distribution.

3.2 Assembly of nonconserved, indistinguishable particles

As a preliminary to our general treatment of indistinguishable particles, we shall find it helpful to consider
first the special case of electromagnetic radiation in a cavity. This is a well known situation where atoms
in the walls of a metal cavity come into thermal equilibrium by emitting and absorbing photons. For our
present purposes we can regard these photons as being particles with zero spin. Accordingly, we treat
them as obeying Bose-Einstein statistics.

Obviously, when we are faced with fluctuating particle numbers, the grand canonical ensemble seems
the natural choice. However, it must be understood that when particles are not conserved, the mean
number of particles in an assembly cannot be specified. Accordingly, there is no Lagrange multiplier
associated with a constraint on the mean number of particles, and this is equivalent to setting µ = 0 in
equation (2.61). It follows therefore that there is no difference for this problem between the canonical
ensemble and the grand canonical ensemble. We shall simply use the former, as it will enable us to make
a useful point.

In order to represent the microstate of the assembly, we shall use the occupation number representation,
as discussed in Section 1.1. That is, we represent the state of the assembly by the set of numbers {nj},
where there are n1 particles with energy ε1, n2 particles with energy ε2, and so on. The energy of the
assembly in this microstate is given by

E =
∑
j

njεj. (3.7)

The partition function for the canonical ensemble is given by equation (2.34). We note that E, as given
by equation (3.7), is the energy of a particular microstate and therefore corresponds to Ei in the energy
representation. The sum over all possible states of the assembly (i.e. the sum over i in (2.34)) is now got
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by summing each of the nj over the ensemble. Making the appropriate replacements in equation (2.34),
we obtain the partition function for the present problem as

Z =
∑

n1,n2...nj ...

exp {−β[n1ε1 + n2ε2 + . . . njεj + . . . ]} , (3.8)

where the summation in the argument of the exponential has been written out explicitly, in order to make
the basic structure clear.

At this point it will prove convenient to introduce a helpful relationship, which takes the form

〈nj〉 = − 1

β

∂

∂εj
lnZ. (3.9)

This relationship may be readily verified by direct substitution of equation (3.8) for the partition function.
Now let us return to the partition function. We may expand out the argument of the exponential to

yield

Z =
∑
n1

exp [−βn1ε1]×
∑
n2

exp [−βn2ε2]× · · ·
∑
nj

exp [−βnjεj]× . . . , (3.10)

which may be further written in terms of the product operator as

Z =
∏
j

{
∑
nj

exp [−βnjεj]}. (3.11)

But, for Bose-Einstein particles, we have nj = 0, 1, 2, . . . , so the term inside the curly bracket may be
written as ∑

nj

exp[−βnjεj] =
1

1− exp [−βεj]
, (3.12)

hence it follows that

Z =
∏
j

1

1− exp [−βεj]
. (3.13)

Then, invoking equation (3.9), we can write a neat expression for the mean number of particles on the
energy level εj, thus:

〈nj〉 =
1

exp [βεj]− 1
, (3.14)

where we have substituted from (3.13) for Z.

3.3 Conserved particles: general treatment for Bose-Einstein and Fermi-Dirac statistics

In this section we continue to work with quantum statistics, but we now consider nonlocalized particles,
which means that we are considering either a Fermi or a Bose gas. We also continue to use the occupation
number representation, as in the preceding section, but we must now recognize that in general particles
will be conserved. That is, for any assembly in the ensemble, the total number of particles N is fixed.
Thus, for such an assembly, the numbers of particles on the various levels are subject to the constraint
that they must all add up to N , or:

N =
∑
j

nj. (3.15)

The existence of this constraint immediately rules out the methods of the last section, as it makes it
impossible to perform the summations which we used to evaluate the partition function. It is easily
verified that the constraint on particle number leaves one with an awkward remainder term, involving the
total particle number N , which cannot be summed.
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Thus, for such an assembly, the numbers of particles on the various levels are subject to the constraint
that they must all add up to N , or:
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An easy way around this difficulty is to consider the assembly to be part of the grand canonical
ensemble, with the result that the total number of particles N becomes a variable which varies from one
assembly to another. Accordingly, we wish to invoke equation (2.62) for the grand partition function, but
first we have to change over from the energy to the occupation number representation. We do this as
follows.

Corresponding to the N -body assembly state | i〉, with energy eigenvalue Ei,N , we have the set of
occupation numbers {nj}. It follows that the sum over states, becomes a sum over occupation numbers if
we write the energy of state | i〉 as

Ei,N =
∑
j

njεj, (3.16)

where, as before, the εj are the energy levels of the N -particle assembly. Hence, the grand partition
function, as given by equation (2.62), takes the form

ZGCE =
∑
N

(N)∑
n1,n2...

exp{−β[n1ε1 + n2ε2 + . . . ] + βµ[n1 + n2 + . . . ]}, (3.17)

where the superscript (N) on the second summation on the rhs indicates the constraint that the nj must
add up to N for each assembly. However, the first summation over N , taken over the ensemble, lifts this
constraint, so that N becomes a dummy variable and the awkward remainder term mentioned above can
now be treated on the same footing as all the others. Or,

∑
N

(N)∑
n1,n2...

≡
∑

n1,n2...

. (3.18)

Thus, with this simplification, the partition function may be written as

ZGCE =
∏
j

Zj, (3.19)

where
Zj =

∑
nj

exp[βnj(µ− εj)]. (3.20)

This result may be compared to equation (3.8) for the partition function of the canonical ensemble of
nonconserved particles in the previous section. It should be noted that the conservation of particle number
leads to the occurrence of the chemical potential µ.

The probability of finding the assembly in the microstate characterised by the set {n}, is just the Gibbs
distribution, as given by equation (2.61),

p{n} =
exp[βµ

∑
j nj − β

∑
j njεj]

ZGCE

, (3.21)

with the appropriate changes to the occupation number representation. Correspondingly, the probability
of finding exactly nj particles of the assembly in state j is given by

pnj
=

exp[βµnj − βnjεj]

ZGCE

. (3.22)

It follows that the mean number of particles in a specific state j, with energy εj, is just

〈nj〉 =
∑
nj

njpnj
= kT

∂ lnZj

∂µ
, (3.23)

where the last step follows from equations (2.17) and (2.59).
In order to make further progress, we have to consider whether our particles are Fermions or Bosons.

We treat the two cases separately, as follows.
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This result may be compared to equation (3.8) for the partition function of the canonical ensemble of
nonconserved particles in the previous section. It should be noted that the conservation of particle number
leads to the occurrence of the chemical potential µ.

The probability of finding the assembly in the microstate characterised by the set {n}, is just the Gibbs
distribution, as given by equation (2.61),

p{n} =
exp[βµ

∑
j nj − β

∑
j njεj]
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, (3.21)

with the appropriate changes to the occupation number representation. Correspondingly, the probability
of finding exactly nj particles of the assembly in state j is given by

pnj
=

exp[βµnj − βnjεj]

ZGCE
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It follows that the mean number of particles in a specific state j, with energy εj, is just

〈nj〉 =
∑
nj

njpnj
= kT

∂ lnZj

∂µ
, (3.23)

where the last step follows from equations (2.17) and (2.59).
In order to make further progress, we have to consider whether our particles are Fermions or Bosons.

We treat the two cases separately, as follows.

213.3.1 Fermi-Dirac (FD) statistics

In this case the particles have spin 1/2 and the exclusion principle limits the possible occupation numbers
to nj = 0 or 1. Hence the single-level partition function (3.20) becomes

Zj = exp 0 + exp β(µ− εj) = 1 + exp [
µ− εj
kT

]. (3.24)

Invoking equation (3.19), and the bridge relationship in the form of equation (2.67), we obtain for the
grand potential

Ω = −kT
∑
j

ln {1 + exp [
µ− εj
kT

]}, (3.25)

and observable macroscopic properties then follow from the thermodynamic relationships contained in
equations (2.69)-(2.71).

3.3.2 Bose-Einstein (BE) statistics

Bosons are those particles with integral spin, and the occupation number can take any nonnegative integer
value. Thus the single-level partition function now becomes

Zj =
∞∑

nj=0

exp
nj[µ− εj]

kT
. (3.26)

The sum of this series is of course given by the binomial theorem and takes the form

Zj =

{
1− exp

[
µ− εj
kT

]}−1

. (3.27)

The grand potential can be obtained, just as in the Fermi-Dirac case above, and is easily shown to take
the form

Ω = kT
∑
j

ln {1− exp
[µ− εj]

kT
}. (3.28)

It should be noted that this result differs only from equation (3.25) for the Fermi-Dirac case by the sign
of the rhs and also the sign of the exponential term.

3.4 The Classical Limit: Boltzmann Statistics

The classical limit is achieved at either high temperatures or low particle densities, when the de Broglie
wavelength of a particle is much smaller than the mean interparticle separation. It can be shown that this
is equivalent to the condition

exp [βµ] � 1.

Another criterion for the classical limit is that the probability of a given state being occupied is small.
If there are many unoccupied states, then the exclusion principle for fermions becomes irrelevant as the
chance of two particles trying to occupy the same state becomes vanishing small. In the previous section
we derived an expression for this probability. We can obtain a combined expression for both kinds of
statistics by substituting either (3.24) or (3.26) for Zj into equation (3.23) for 〈nj〉, thus:

〈nj〉 =
1

exp β[εj − µ]± 1
, (3.29)

where the plus sign corresponds to FD statistics and the minus sign to BE statistics. For the classical
limit, we have

exp [βµ] � 1 ⇒ exp [−βµ] � 1,
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∑
j
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µ− εj
kT

]}, (3.25)
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nj=0
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nj[µ− εj]

kT
. (3.26)
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{
1− exp

[
µ− εj
kT

]}−1

. (3.27)
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Ω = kT
∑
j
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[µ− εj]

kT
}. (3.28)
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22and so
exp β[εj − µ] � 1,

irrespective of the value of εj. Accordingly, we can use the binomial theorem to expand out the rhs of
equation (3.29) on the basis of the exponential term in the denominator being much less than unity.

At this stage it is convenient to work with the grand potential. Combining equations (3.25) and (3.28),
we obtain for both kinds of statistics,

Ω = ∓kT
∑
j

ln {1± exp
[µ− εj]

kT
}, (3.30)

where the upper sign is for FD and the lower sign is for BE statistics. Now expand out the log on the
basis that the exponential factor is small (note that this is the inverse of the exponential factor discussed
just above!), to obtain

Ω � ∓kT
∑
j

(±) exp
[µ− εj]

kT
= −kT

∑
j

exp
[µ− εj]

kT
. (3.31)

This is obviously consistent with our expectation that in the classical limit there is no distinction between
the different kinds of particles. That is, at sufficiently high temperatures or sufficiently low densities,
equation (3.31) is valid for FD, BE and Maxwell-Boltzmann statistics alike.

We can fix the chemical potential µ as follows. From equation (2.71) and equation (3.31) we can write
the mean particle number as

N =
∑
j

exp β[µ− εj] = Z1 exp [−βµ], (3.32)

where Z1 is the single-particle partition function in the canonical ensemble, as given by equation (3.4).
Rearranging this expression then yields

µ = kT lnN/Z1. (3.33)

Now consider the Helmholtz free energy F ; viz.

F = E − TS

= Ω+ µN

= Ω+NkT lnN/Z1, (3.34)

where the first equality follows from the first line of equation (2.65) and the second from equation (3.33)
for Z1. Further, assuming the equation of state of an ideal gas, and making use of Stirling’s approximation
we may write the free energy in the classical limit as

F = −kT lnZN
1 /N !. (3.35)

If we now compare this result with that for the free energy in the canonical ensemble, as given by equation
(3.5), we can make the identification:

Zindis = ZN
1 /N !, (3.36)

for indistinguishable particles. So it follows, taken to the classical limit, that we have

Zindis → Zdis/N !, (3.37)

where Zdis is given by equation (3.3). That is, the factor N ! corrects the overcounting of actually identical
microstates in a theory based on indistinguishability of identical particles.
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Chapter 4

The bedrock problem: strong interactions

In Part 1 we considered only cases where particles are weakly interacting. By this we mean that in the
classical sense they do not interact except by localised collisions which are necessary to bring the system
into equilibrium. For the quantal gases we know that the requirements of quantum mechanics have to be
satisfied and that this imposes an effective interaction between particles. However, we have seen that the
use of the Canonical Ensemble allows us to treat particles as being independent even although they are
connected by a constraint on their total energy. Similarly, a constraint on particle number can be evaded
by using the Grand Canonical Ensemble.

We now consider cases where particles are strongly interacting, through Coulomb or Lennard-Jones
potentials. For sake of simplicity, we mainly opt for the classical formalism and in this Part consider
only the case of stationary assemblies. In effect, we now ask the basic question: what is the many-body
problem? We answer this question by considering the Hamiltonian of the system.

4.1 The interaction Hamiltonian

As before, in the classical formalism, we consider an N -body assembly of volume V with total system
Hamiltonian H. For a perfect gas (no interactions), H can be written as the sum of single-particle
Hamiltonians, thus:

H =
N∑
i=1

p2i
2m

=
N∑
i=1

Hi, (4.1)

where the index i labels any particle. However, there is no dependence on the generalised position coor-
dinate of the ith particle qi.

In general this cannot be true. Suppose we consider as an example a gas of charged particles. If we
take these to be electrons, then each pair of particles will experience the mutual Coulomb potential. For
particles labelled 1 and 2 we may write this as

φ12 =
e2

|r1 − r2|
,

wherer e is the electronic charge. More generally, for particles labelled i and j we have

φij =
e2

|ri − rj|
.

Evidently, for a gas of charged particles we would have to add up the above contribution for every pair of
particles and add it on to the free-particle form of equation (4.1) in order to obtain the system Hamiltonian.
This strongly suggests that for any interacting assembly, the total Hamiltonian may be expected to take
a more complicated form which may be written as

H =
N∑

n=1

Hn +
∑
n,m

Hnm (4.2)
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where the second term represents the interactions between particles. In fact this is too general a form for
our purposes here. We shall make the restriction to interactions which involve pairs of particles only and
in which the potential between each pair of particles depends only on their separation, thus:

H =
N∑
i=1

p2i
2m

+
N∑

i<j=1

φ(|qi − qj|). (4.3)

Note the convention on the double sum. This is to avoid counting each pair of particles twice. We shall
encounter various ways of ensuring this.

The problem now is to solve for the partition function and, as we shall see later, one interesting
approach is to assume that the interactions are small and look for corrections to the ‘perfect gas’ case.
However, we begin by considering the general problem.

4.2 Diagonal forms of the Hamiltonian

The problem with (4.2) or (4.3) is that the Hamiltonian is nondiagonal: so in general it is difficult to do
the ‘sum over states’ needed to find the partition function. An obvious approach is to try to diagonalise H,
so that it takes the form of equation (4.1) for noninteracting systems, even although there are interactions
present. There are some cases where this can be done exactly but more usually it can only be done
approximately.

4.3 Theory of specific heats of solids

As an example of an exact method of diagonalizing the Hamiltonian, we revise a topic from elementary
statistical physics.

4.3.1 Classical theory

Consider a solid as being made up from 3N independent, distinguishable oscillators, each at a different
lattice site. The Hamiltonian for a simple harmonic oscillator is just

H(p, q) =
p2

2m
+

mw2q2

2
(4.4)

Hence we treat the problem as a canonical ensemble and obtain Z in order to derive the thermodynamic
properties. The resultant specific heat agrees well with experimental results at large values of T .

4.3.2 Einstein theory

Make the same assumptions as in the classical case, but replace (4.4) by

Ĥ = h̄w(N̂ + 1/2) (4.5)

where Ĥ is the Hamiltonian operator and N̂ is the number operator. This gives a reasonable result for
specific heat for all T , but is worst at low temperatures.

4.3.3 Debye theory

Assume that the oscillators are coupled so that the Hamiltonian for the assembly is not diagonal, thus:

H(p,q) =
3N∑
i=1

p2i
2m

+
3N∑
i,j

Aijqiqj. (4.6)
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Hence we treat the problem as a canonical ensemble and obtain Z in order to derive the thermodynamic
properties. The resultant specific heat agrees well with experimental results at large values of T .

4.3.2 Einstein theory

Make the same assumptions as in the classical case, but replace (4.4) by

Ĥ = h̄w(N̂ + 1/2) (4.5)

where Ĥ is the Hamiltonian operator and N̂ is the number operator. This gives a reasonable result for
specific heat for all T , but is worst at low temperatures.

4.3.3 Debye theory

Assume that the oscillators are coupled so that the Hamiltonian for the assembly is not diagonal, thus:

H(p,q) =
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p2i
2m

+
3N∑
i,j
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The matrix Anm depends on the nature of the interaction between the oscillators. This form of H can be
diagonalised in terms of the normal coordinates and normal modes:

H(P,Q) =
3N∑
i=1

P 2
i

2m
+

3N∑
i=1

mω2
i

2
Q2

i , (4.7)

where ωn are the frequencies of the normal modes. Can then apply the Einstein approach to (4.7), with
the phonon Hamiltonian

Ĥ =
∑
n

h̄ωn(N̂n + 1/2). (4.8)

4.4 Quasi-particles and renormalization

A very powerful approximate method is to diagonalise H by replacing the interaction by the overall effect
of all the other particles on the nth particle. The result can be an approximation to (4.2) in the form:

H =
∑
i

H ′
i. (4.9)

Here each of the N particles is replaced by a quasi-particle and H ′
i is the effective Hamiltonian for the ith

quasi-particle. Each quasi-particle has a portion of the interaction energy added on to its single-particle
form. In order to describe this process, we borrow the term ‘renormalization’ from quantum field theory.
A renormalization process is one where we make the replacement:

‘bare’ quantity + interactions → ‘dressed’ quantity.

For example, we could consider the case of conduction electrons in a metal. In this case we have:

The effect of the lattice potential → ‘quasi-electron’ with an effective mass.

Or, a case which we shall discuss in some detail later, that of electrons in a classical plasma. Here we have:

The effect of all the other electrons → quasi-electron with effective charge (screened potential).

A general systematic self-consistent approach along these lines is usually known as a mean field theory.
We shall illustrate this approach with two examples: the Weiss theory of ferromagnetism (in Section 5)
and the Debye-Hückel theory of electrolytes.

4.5 Perturbation theory for low densities

One can give a formal treatment of perturbation theory but we can cheat a little by simply expanding
out the exponential form in the partition function. We can make the many-body partition function
more tractable by expanding out the interaction term in powers of the density or in powers of 1/T
(high-temperature expansions). In this context the temperature and the density are regarded as control
parameters since they control the strength of the interaction or coupling.

In order to demonstrate the use of the density as a control parameter we consider a model for a real
gas with various assumptions about the shape of the intermolecular potential. We show that it is possible
to obtain ‘low-density’ corrections to the equation of state for an ideal gas.

For the purposes of this section we shall need the Taylor series for an exponential function, viz.,

ex = 1 + x+
x2

2!
+

x3

3!
. . .

xs

s!
+ . . . =

∞∑
s=0

xs

s!
,

along with that for a natural logarithm, thus:

ln(1 + x) = x− x2

2
+

x3

3
+ . . . , (4.10)
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and the binomial expansion

(a+ x)n = an + nan−1x+
n(n− 1)

2!
an−2x2 + . . . . (4.11)

4.5.1 Low-density expansions: macroscopic case

We shall consider a gas in which the molecules interact but will ‘weaken’ the interaction (or coupling)
by restricting our attention to low densities. Accordingly we shall formulate the general theory on the
assumption that interactions between particles will lead to perturbations of the ‘perfect gas’ solution. We
shall only treat the case of the ‘slightly imperfect gas’ as a specific example of the method. With this in
mind, it may be helpful to begin by considering the problem from the macroscopic point of view and try
to anticipate the results of the microscopic theory, even if only qualitatively.

We know that the perfect gas law is consistent with the neglect of interactions between the molecules,
and indeed also fails to allow for the fraction of the available volume which the molecules occupy. Thus, in
general terms, we expect the perfect gas law to be a good approximation for a gas which is not too dense
and not too cold. For a system of N molecules, occupying a fixed volume V , the perfect gas law, usually
written as

PV = NkT, (4.12)

tells us the pressure P . However, if we rewrite this in terms of the number density n = N/V , then we can
assume that this must be the limiting form (at low densities) of some more complicated law which would
be valid at larger densities. Thus,

P = nkT +O(n2), (4.13)

where for increasing values of number density we would expect to have to take into account higher-order
terms in n. Formally, it is usual to anticipate that the exact form of the law may be written as the
expansion

PV = NkT [B1(T ) + B2(T )n+ B3(T )n
2 + . . . ]. (4.14)

This is known as the virial expansion and the coefficients are referred to as:

B1(T ): the first virial coefficient, which is equal to unity;

B2(T ): the second virial coefficient;

B3(T ): the third virial coefficient;

and so on, to any order. It should be noted that the coefficients depend on temperature because, for a
given density, the effective strength of the particle interactions will depend on the temperature. It should
also be noted that the status of equation (4.14), on the basis of the reasoning given, is little more than
that of a plausible guess. In the next section, we shall begin the process of seeing to what extent such a
guess is supported by microscopic considerations.

4.5.2 Low-density expansion: microscopic case

Now we turn our attention to the microscopic picture, and consider N interacting particles in phase space.
Although we shall base our approach on the classical picture, we shall divide phase space up into cells of
volume V0 = h3. This allows us to take over the partition function for a quantum assembly to a classical
description of the microstates. The partition function generalises to

Z =
1

N !

∑

cells

e−E(X)/kT , (4.15)

where X ≡ (q,p) is the usual ‘system point’ in phase space, the sum over discrete microstates has been
replaced by a sum over cells, and the factor 1/N ! is required for the classical limit; to take the correct
form.

28

The matrix Anm depends on the nature of the interaction between the oscillators. This form of H can be
diagonalised in terms of the normal coordinates and normal modes:

H(P,Q) =
3N∑
i=1

P 2
i

2m
+

3N∑
i=1

mω2
i

2
Q2

i , (4.7)

where ωn are the frequencies of the normal modes. Can then apply the Einstein approach to (4.7), with
the phonon Hamiltonian

Ĥ =
∑
n

h̄ωn(N̂n + 1/2). (4.8)

4.4 Quasi-particles and renormalization

A very powerful approximate method is to diagonalise H by replacing the interaction by the overall effect
of all the other particles on the nth particle. The result can be an approximation to (4.2) in the form:

H =
∑
i

H ′
i. (4.9)

Here each of the N particles is replaced by a quasi-particle and H ′
i is the effective Hamiltonian for the ith

quasi-particle. Each quasi-particle has a portion of the interaction energy added on to its single-particle
form. In order to describe this process, we borrow the term ‘renormalization’ from quantum field theory.
A renormalization process is one where we make the replacement:

‘bare’ quantity + interactions → ‘dressed’ quantity.

For example, we could consider the case of conduction electrons in a metal. In this case we have:

The effect of the lattice potential → ‘quasi-electron’ with an effective mass.

Or, a case which we shall discuss in some detail later, that of electrons in a classical plasma. Here we have:

The effect of all the other electrons → quasi-electron with effective charge (screened potential).

A general systematic self-consistent approach along these lines is usually known as a mean field theory.
We shall illustrate this approach with two examples: the Weiss theory of ferromagnetism (in Section 5)
and the Debye-Hückel theory of electrolytes.

4.5 Perturbation theory for low densities

One can give a formal treatment of perturbation theory but we can cheat a little by simply expanding
out the exponential form in the partition function. We can make the many-body partition function
more tractable by expanding out the interaction term in powers of the density or in powers of 1/T
(high-temperature expansions). In this context the temperature and the density are regarded as control
parameters since they control the strength of the interaction or coupling.

In order to demonstrate the use of the density as a control parameter we consider a model for a real
gas with various assumptions about the shape of the intermolecular potential. We show that it is possible
to obtain ‘low-density’ corrections to the equation of state for an ideal gas.

For the purposes of this section we shall need the Taylor series for an exponential function, viz.,

ex = 1 + x+
x2

2!
+

x3

3!
. . .

xs

s!
+ . . . =

∞∑
s=0

xs

s!
,

along with that for a natural logarithm, thus:

ln(1 + x) = x− x2

2
+

x3

3
+ . . . , (4.10)
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and the binomial expansion

(a+ x)n = an + nan−1x+
n(n− 1)

2!
an−2x2 + . . . . (4.11)

4.5.1 Low-density expansions: macroscopic case

We shall consider a gas in which the molecules interact but will ‘weaken’ the interaction (or coupling)
by restricting our attention to low densities. Accordingly we shall formulate the general theory on the
assumption that interactions between particles will lead to perturbations of the ‘perfect gas’ solution. We
shall only treat the case of the ‘slightly imperfect gas’ as a specific example of the method. With this in
mind, it may be helpful to begin by considering the problem from the macroscopic point of view and try
to anticipate the results of the microscopic theory, even if only qualitatively.

We know that the perfect gas law is consistent with the neglect of interactions between the molecules,
and indeed also fails to allow for the fraction of the available volume which the molecules occupy. Thus, in
general terms, we expect the perfect gas law to be a good approximation for a gas which is not too dense
and not too cold. For a system of N molecules, occupying a fixed volume V , the perfect gas law, usually
written as

PV = NkT, (4.12)

tells us the pressure P . However, if we rewrite this in terms of the number density n = N/V , then we can
assume that this must be the limiting form (at low densities) of some more complicated law which would
be valid at larger densities. Thus,

P = nkT +O(n2), (4.13)

where for increasing values of number density we would expect to have to take into account higher-order
terms in n. Formally, it is usual to anticipate that the exact form of the law may be written as the
expansion

PV = NkT [B1(T ) + B2(T )n+ B3(T )n
2 + . . . ]. (4.14)

This is known as the virial expansion and the coefficients are referred to as:

B1(T ): the first virial coefficient, which is equal to unity;

B2(T ): the second virial coefficient;

B3(T ): the third virial coefficient;

and so on, to any order. It should be noted that the coefficients depend on temperature because, for a
given density, the effective strength of the particle interactions will depend on the temperature. It should
also be noted that the status of equation (4.14), on the basis of the reasoning given, is little more than
that of a plausible guess. In the next section, we shall begin the process of seeing to what extent such a
guess is supported by microscopic considerations.

4.5.2 Low-density expansion: microscopic case

Now we turn our attention to the microscopic picture, and consider N interacting particles in phase space.
Although we shall base our approach on the classical picture, we shall divide phase space up into cells of
volume V0 = h3. This allows us to take over the partition function for a quantum assembly to a classical
description of the microstates. The partition function generalises to

Z =
1

N !

∑

cells

e−E(X)/kT , (4.15)

where X ≡ (q,p) is the usual ‘system point’ in phase space, the sum over discrete microstates has been
replaced by a sum over cells, and the factor 1/N ! is required for the classical limit; to take the correct
form.

28
The cell size is small, being of the magnitude of the cube of Planck’s constant h, so we can go over to

the continuum limit and replace sums by integrals, thus:

∑

cells

→ 1

h3

∫
dp

∫
dq.

Hence equation (4.15) can be written as:

Z =
1

N !h3N

∫
dp1 . . .

∫
dpN

∫
dq1 . . .

∫
dqN × e−E(q,p)/kT . (4.16)

Note that the prefactor of 1/N !h3N guarantees that the free energy is consistent with the quantum formula-
tion. Also note that we take the number of degrees of freedom to be determined purely by the translational
velocities and exclude internal degrees of freedom such as rotations and vibrations of molecules. From now
on we use Φ or φ for potential energy in order to avoid confusion with V for volume

We can factor out the integration with respect to p, by writing the exponential as

e−E(p,q)/kT = e−
∑N

i=1 p
2
i /2mkT × e−Φ(q)/kT ,

and so write the total partition function for the system as the product of Z0, the partition function for
the perfect gas, with another function Q, thus

Z = Z0Q, (4.17)

where (using a well known result from elementary statistical physics)

Z0 =
V N

N !

(
2πmkT

h2

)3N/2

, (4.18)

and the the configurational partition function or, more usually, configurational integral Q is given
by

Q =
1

V N

∫
dq1 . . .

∫
dqNe

−Φ(q)/kT . (4.19)

We shall restrict our attention to the important general case of two-body potentials where

Φ(q) =
N∑

i<j=1

φ(|qi−qj|) ≡
N∑

i<j=1

φij, (4.20)

and hence the function Φ(q) will be written as the double sum over φij from now on.
Evaluation of (4.19) for Q is difficult in general, and depends very much on the form of the two-body

potential φij. For instance, for molecules with radius ∼ b, the hard-sphere potential is

φHS(r) = ∞ for r < 2b;

= 0 for r > 2b, (4.21)

where we have taken the interparticle separation to be r. This potential is illustrated in Figure 4.1.
Or, the more realistic Lennard-Jones (or ‘six–twelve’) potential is given by

φLJ(r) = 4ε[(b/r)12 − (b/r)6] (4.22)

where ε is related to binding energy, and this is illustrated schematically in Figure 4.2. Evidently, if the
temperature of the gas (and hence the kinetic energy of the molecules) is sufficiently low, a bound state
may occur, as shown in the figure for an inter-particle energy of E1. However, if the temperature is high
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The cell size is small, being of the magnitude of the cube of Planck’s constant h, so we can go over to
the continuum limit and replace sums by integrals, thus:

∑

cells

→ 1

h3

∫
dp

∫
dq.

Hence equation (4.15) can be written as:

Z =
1

N !h3N

∫
dp1 . . .

∫
dpN

∫
dq1 . . .

∫
dqN × e−E(q,p)/kT . (4.16)

Note that the prefactor of 1/N !h3N guarantees that the free energy is consistent with the quantum formula-
tion. Also note that we take the number of degrees of freedom to be determined purely by the translational
velocities and exclude internal degrees of freedom such as rotations and vibrations of molecules. From now
on we use Φ or φ for potential energy in order to avoid confusion with V for volume

We can factor out the integration with respect to p, by writing the exponential as

e−E(p,q)/kT = e−
∑N

i=1 p
2
i /2mkT × e−Φ(q)/kT ,

and so write the total partition function for the system as the product of Z0, the partition function for
the perfect gas, with another function Q, thus

Z = Z0Q, (4.17)

where (using a well known result from elementary statistical physics)

Z0 =
V N

N !

(
2πmkT

h2

)3N/2

, (4.18)

and the the configurational partition function or, more usually, configurational integral Q is given
by

Q =
1

V N

∫
dq1 . . .

∫
dqNe

−Φ(q)/kT . (4.19)

We shall restrict our attention to the important general case of two-body potentials where

Φ(q) =
N∑

i<j=1

φ(|qi−qj|) ≡
N∑

i<j=1

φij, (4.20)

and hence the function Φ(q) will be written as the double sum over φij from now on.
Evaluation of (4.19) for Q is difficult in general, and depends very much on the form of the two-body

potential φij. For instance, for molecules with radius ∼ b, the hard-sphere potential is

φHS(r) = ∞ for r < 2b;

= 0 for r > 2b, (4.21)

where we have taken the interparticle separation to be r. This potential is illustrated in Figure 4.1.
Or, the more realistic Lennard-Jones (or ‘six–twelve’) potential is given by

φLJ(r) = 4ε[(b/r)12 − (b/r)6] (4.22)

where ε is related to binding energy, and this is illustrated schematically in Figure 4.2. Evidently, if the
temperature of the gas (and hence the kinetic energy of the molecules) is sufficiently low, a bound state
may occur, as shown in the figure for an inter-particle energy of E1. However, if the temperature is high
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(interparticle energy labelled by E2 in the figure), then the use of a hard-sphere potential might be a
satisfactory approximation.

Other forms, such as the Coulomb potential, can be considered as required, but usually the configuration
integral can only be evaluated approximately. In the next section we consider the use of the perturbation
expansion in terms of a ‘book-keeping’ parameter. This is introduced as an arbitrary factor, just as if it
were the usual ‘small quantity’ in perturbation theory; and, just as if it were the perturbation parameter,
it is used to keep track of the various orders of terms during an iterative calculation. However, unlike the
conventional perturbation parameter, it is not small and in fact is put equal to unity at the end of the
calculation.

4.5.3 Perturbation expansion of the configuration integral

If the potential is, in some sense, weak (and we shall enlarge on what we mean by this at the end of the
section), then we can expand out the exponential in (4.19) as a power series and truncate the resulting
expansion at low order. In general, for any exponential we have the result given at the beginning of the
section, and expanding the exponential in equation (4.19) in this way gives us

Q = V −N

∫
dq1 . . .

∫
dqN

∞∑
s=o

−
(

λ

kT

)s
1

s!

(
N∑

i<j=1

φij

)s

, (4.23)

where λ is a ‘book-keeping’ parameter (λ = 1). Any possibility of low-order truncation depends on integrals
being well-behaved and this in turn depends very much on the nature of φ. Also, combinatorial effects
increase with order λs, as follows:
s = 0 :

Q0 = V −N

∫
dq1 . . .

∫
dqN = 1, (4.24)

where, of course, ∫
dq1 = V . . .

∫
dqN = V.

s = 1:

(−kT )Q1 = V −N

∫
dq1 . . .

∫
dqN

(
N∑

i<j=1

φij

)

= V −N

∫
dq1 . . .

∫
dqN(φ12 + φ13 + φ23 + φ14 + . . . )

= V −2(

∫ ∫
dq1dq2φ12 +

∫ ∫
dq1dq3φ13 + . . . ). (4.25)

And so on. Noting that Q1 is made up of many identical terms, each of which is a double integral over
the same pairwise potential, it follows that we need evaluate only one of these integrals, and may then
multiply the result by the number of pairs which can be chosen from N particles. Hence

Q1 = −1

2
N(N − 1)V −1

∫
φ12

kT
dr12, (4.26)

where we have made the change of variables r12 = q1−q2, and the integration with respect to the centroid
coordinate R = (q1 + q2)/2 cancels one of the factors 1/V .

Higher orders get more complicated and in practice diagram methods can be helpful. But the real
problem is the unsatisfactory behaviour which is found when we attempt to take the thermodynamic
limit:

Lt N/V → n, as N, V → ∞.
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The expansion fails this test as, at any order s, there are various dependences on n, so that it does not
take the form expected as in equation (4.14). (In mathematical terms, the expansion is inhomogeneous.)

This problem is not as serious as it might first appear, although our way of dealing with it may look
rather like a trick. First we recall that the object of calculating the partition function is to calculate
the free energy F (and hence all thermodynamical properties). To do this we use the bridge equation
F = −kT lnZ, which tells us that F ∼ Z. Hence our trick is to work with lnQ rather than Q (in
other words, with the free energy due to interactions) to get a new series. In practice this amounts to
a rearrangement of the perturbation expansion such that one finds an infinite series of terms associated
with n, n2, n3, and so on. Each of these infinite series must be summed to give a coefficient in our new
expansion in powers of n.

However we close here by reconsidering what we mean by saying that the potential is ‘weak’. We
obtain one immediate clue from the above problems with the perturbation expansion, which is effectively
(as is usual in many-body problems) in terms of the interaction strength. Intuitively, we can see that if
the density is low, on average the particles will be far apart and hence the contribution of the interaction
potential to the overall potential energy will be small. Also, we note that the potential energy (just like
the kinetic energy) always appears divided by the factor kT , and so for large temperatures the argument
of the exponentials will be small. Thus, for either low densities or high temperatures the exponentials can
be expanded and truncated at low order. When we consider critical phenomena (e.g. a gas becoming a
liquid), in the nature of things the density cannot realistically be treated as small. In these circumstances
however, it can be useful to use the temperature as a control parameter and the interaction divided by
kT is sometimes referred to as the coupling.

4.5.4 The Mayer functions and the virial coefficients

In real gases, it is postulated that higher-density corrections to the perfect gas equation take the form given
by equation (4.14). Here we shall use statistical mechanics to explore the general method of calculating
the virial coefficients, and although we shall not give a complete treatment, we shall highlight some of the
difficulties involved. However, in the following section, we shall then calculate the second virial coefficient
B2 explicitly.

From equations (4.19) and (4.20), we may write the configurational integral as

Q =
1

V N

∫
dq1 . . .

∫
dqN e−

∑
i<j φij/kT

=
1

V N

∫
dq1 . . .

∫
dqN

∏
i<j

e−φij/kT . (4.27)

Now we introduce the Mayer functions fij, which are defined such that

fij = e−φij/kT − 1. (4.28)

These possess the useful property that:

as r → 0, fij → −1 for φij → ∞,

and changes the product of (4.27) into a sum.
Upon substitution of (4.28), equation (4.27) for the configurational integral becomes:

Q =
1

V N

∫
dq1 . . .

∫
dqN

∏
i<j

(1 + fij)

=
1

V N

∫
dq1 . . .

∫
dqN [1 +

∑
i<j

fij +
∑
i<j

∑
k<l

fijfkl + . . . ] . (4.29)

Note three points about this:
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The expansion fails this test as, at any order s, there are various dependences on n, so that it does not
take the form expected as in equation (4.14). (In mathematical terms, the expansion is inhomogeneous.)

This problem is not as serious as it might first appear, although our way of dealing with it may look
rather like a trick. First we recall that the object of calculating the partition function is to calculate
the free energy F (and hence all thermodynamical properties). To do this we use the bridge equation
F = −kT lnZ, which tells us that F ∼ Z. Hence our trick is to work with lnQ rather than Q (in
other words, with the free energy due to interactions) to get a new series. In practice this amounts to
a rearrangement of the perturbation expansion such that one finds an infinite series of terms associated
with n, n2, n3, and so on. Each of these infinite series must be summed to give a coefficient in our new
expansion in powers of n.

However we close here by reconsidering what we mean by saying that the potential is ‘weak’. We
obtain one immediate clue from the above problems with the perturbation expansion, which is effectively
(as is usual in many-body problems) in terms of the interaction strength. Intuitively, we can see that if
the density is low, on average the particles will be far apart and hence the contribution of the interaction
potential to the overall potential energy will be small. Also, we note that the potential energy (just like
the kinetic energy) always appears divided by the factor kT , and so for large temperatures the argument
of the exponentials will be small. Thus, for either low densities or high temperatures the exponentials can
be expanded and truncated at low order. When we consider critical phenomena (e.g. a gas becoming a
liquid), in the nature of things the density cannot realistically be treated as small. In these circumstances
however, it can be useful to use the temperature as a control parameter and the interaction divided by
kT is sometimes referred to as the coupling.

4.5.4 The Mayer functions and the virial coefficients

In real gases, it is postulated that higher-density corrections to the perfect gas equation take the form given
by equation (4.14). Here we shall use statistical mechanics to explore the general method of calculating
the virial coefficients, and although we shall not give a complete treatment, we shall highlight some of the
difficulties involved. However, in the following section, we shall then calculate the second virial coefficient
B2 explicitly.

From equations (4.19) and (4.20), we may write the configurational integral as

Q =
1

V N

∫
dq1 . . .

∫
dqN e−

∑
i<j φij/kT

=
1

V N

∫
dq1 . . .

∫
dqN

∏
i<j

e−φij/kT . (4.27)

Now we introduce the Mayer functions fij, which are defined such that

fij = e−φij/kT − 1. (4.28)

These possess the useful property that:

as r → 0, fij → −1 for φij → ∞,

and changes the product of (4.27) into a sum.
Upon substitution of (4.28), equation (4.27) for the configurational integral becomes:

Q =
1

V N

∫
dq1 . . .

∫
dqN

∏
i<j

(1 + fij)

=
1

V N

∫
dq1 . . .

∫
dqN [1 +

∑
i<j

fij +
∑
i<j

∑
k<l

fijfkl + . . . ] . (4.29)

Note three points about this:
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Figure 4.3: The Mayer function f corresponding to a realistic choice of interparticle potential φ.

1. fij is negligibly small in value unless the molecules making up the pair labelled by i and j are close
together. Hence, for non-negligible values, f12 requires molecules 1 and 2 to collide; f12f34 requires
molecules 1 and 2 to collide simultaneously with the collision between molecules 3 and 4; f12f23
requires a triple collision of molecules 1, 2 and 3; and so on.

2. The terms in equation (4.29) involve molecular clusters. For this reason the multiple integrals in
(4.29) are known as cluster integrals.

3. The expansion given in equation (4.29) is known as the virial cluster expansion.

4.5.5 Calculation of the second virial coefficient B2

We shall work only to first order in fij. That is,

Q =
1

V N

∫
dq1 . . .

∫
dqN [1 +

∑
i<j

fij]. (4.30)

Now, evidently f12 = f13 = · · · = f23, so we shall take f12 as representative. Also, there are N(N − 1)/2
pairs. Hence, to first order in the interaction potential, we have

Q =
1

V N

∫
dq1 . . .

∫
dqN

[
1 +

N(N − 1)

2
f12

]
,

and so

Q =
1

V N
[V N + V N−2

∫
dq1

∫
dq2

N(N − 1)

2
f12]

= 1 + V −2

∫
dq1

∫
dq2

N(N − 1)

2
f(|q1−q2|). (4.31)
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Figure 4.3: The Mayer function f corresponding to a realistic choice of interparticle potential φ.
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Next we change variables to work in the relative and centroid coordinates, r = q1−q2 and R = 1
2
(q1+q2),

respectively: this is illustrated in Figure 4.4. Then, assuming spherical symmetry of the interaction
potential, we obtain

Q = 1 + V −2

∫
dR

N(N − 1)

2

∫
drf(r)

= 1 +
N(N − 1)

2V

∫
f(r)dr

= 1 +
N2

2V
I2, (4.32)

where I2 is the cluster integral

I2 =

∫
drf(r) =

∫
dr[e−φ(r)/kT − 1], (4.33)

and, in the last step, we have substituted for the Mayer function to obtain our result for the second virial
coefficient in terms of the interaction potential.

Now we resort to two tricks. First, we rewrite equation (4.32) for Q as the leading terms in an expansion

Q = 1 +N

(
NI2
2V

)
+ . . . . (4.34)

Second, we note that the free energy F ∼ lnQ must be extensive, so we must have lnQ ∼ N . It follows
that the most likely form of the sum of the series on the righthand side of (4.35) is

Q =

(
1 +

NI2
2V

)N

. (4.35)
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So, from this result, the bridge equation for F and (4.17) for Z we obtain the following expression for
the free energy:

F = −kT lnZ = −kT lnZ0 − kT lnQ

= F0 − kT lnQ = F0 −NkT ln

(
1 +

NI2
V 2

)

= F0 −
NkT

2

(
N

V

)
I2, (4.36)

where we used the Taylor series for ln(1 + x), as given at the beginning of this section. We may obtain
the equation of state from the usual thermodynamic relationship P = (−∂F/∂V )T,N . Thus

P =
NkT

V
− NkT

V

(
N

V

)
1

2
I2 =

NkT

V

[
1− I2

2

(
N

V

)]
. (4.37)

Then, comparison with the expansion of (4.14) yields

B2 = −1

2
I2, (4.38)

as the second virial coefficient.
Lastly, we should note that the procedure just followed, although on the face of it ad hoc, nevertheless

constitutes an effective renormalization, equivalent to a partial summation of the perturbation series.

4.6 The Debye-Hückel theory of the electron gas

We introduce the concept of the self-consistent field theory by considering the problem of a plasma or
electrolyte, where the interaction between pairs of particles is the Coulomb potential.

The theory dates back to 1922 and, like the Weiss theory of ferromagnetism, is an ancient theory which
is still close to the frontiers of many-body physics even today. It is not perhaps quite as important as
the Weiss theory, but is of general relevance to the perturbation treatment of the electron gas at high
temperatures or to electrolytes in the classical regime. It is also of relevance in rheology where it can be
used to describe the mutual interactions of particles suspended in a fluid.

We state our theoretical objective here, as follows:

We wish to calculate the electrostatic potential at a point r due to an electron at the origin
while taking into account the effect of all the other electrons in the system.

4.6.1 The mean-field assumption

We shall discuss an idealized version of the problem in whichN electrons are free to move in an environment
with spatially uniform positive charge, chosen such that overall the system is electrically neutral. Both
negative and positive charge densities are numerically equal to en∞, where e is electronic charge and n∞
is the number density when the electrons are spread out uniformly.

Consider the case where one electron is at r = 0. We wish to know the probability p(r) of finding a
second electron a distance r away. At thermal equilibrium, equations (2.33) and (2.34) apply, so this is
given by

p(r) =
e−W (r)/kT

Z
, (4.39)

where as usual Z is the partition function and W (r) is the renormalized interaction energy, which takes
into account the collective effect of all N electrons. We expect that (like the bare Coulomb form) the
dressed interaction will satisfy

W (r) → 0 as r → ∞. (4.40)
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It will be seen later that W (r) is analogous to the molecular field introduced in the Weiss theory and that
(4.39) and (4.40) together amount to a mean-field approximation. Then, the probability Pr (say) of
finding a second electron in the spherical shell between r and r + dr around the first electron is just

Pr = P (r)× 4πr2dr =
1

Z
e−W (r)/kT × 4πr2dr, (4.41)

and so the number of electrons in the shell is

Nr = NPr =
N

Z
e−W (r)/kT × 4πr2dr. (4.42)

Hence, the number density n(r) of electrons in the shell is given by

n(r) =
NPr

4πr2dr
=

N

Z
e−W (r)/kT . (4.43)

Now consider the ratio of this density to that at some other r = R, thus:

n(r)

n(R)
=

e−W (r)/kT

e−W (R)/kT
. (4.44)

Further, let us take R → ∞, and using (5.19), we have

e−W (R)/kT → 1,

and so equation(4.44) may be written as

n(r)

n(∞)
= e−W (r)/kT . (4.45)

Or, in terms of the uniform number density introduced at the beginning of this section, viz., n∞ = n(∞),
we may rearrange this result into the form:

n(r) = n∞e−W (r)/kT . (4.46)

4.6.2 The self-consistent approximation

Debye and Hückel (1923) proposed that φ should be determined self-consistently by making a ‘continuum
approximation’ and solving Poisson’s equation (from electrostatics), thus:

∇2φ = −4πρ(r), (4.47)

where ρ(r) is the electron charge density. In this case, the electron charge density may be taken as

ρ(r) = en(r)− en∞,

and the Poisson equation becomes

∇2φ(r) = −4πen∞{e−eφ(r)/kT − 1}, (4.48)

where we substituted
W = eφ(r), (4.49)

into the right-hand side of equation (4.46) for n(r) and φ(r) is the self-consistent field potential.
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Figure 4.5: Comparison of the Coulomb potential (full line) with a screened potential (dashed line .

4.6.3 The screened potential

If we restrict ourselves to W << kT (that is, the high-temperature case), and expand out the exponential
to first order, Poisson’s equation further becomes

∇2φ =
4πe2n∞φ

kT
(4.50)

with solution readily found to be

φ =
(e
r

)
exp{−r/lD}, (4.51)

where lD is the Debye length and is given by

lD =

[
4πe2n∞

kT

]−1/2

. (4.52)

Equation (4.51) represents a ‘screened potential’. Physically, the Debye length is interpreted as the
radius of the screening cloud of electrons about any one electron. This can also be interpreted as ‘charge
renormalization’, in the following sense

e → e× exp{−r/lD}.

Note that it is necessary to consider the circumstances under which the cloud of discrete electrons can be
regarded as a continuous charge density.

4.6.4 Validity of the continuum approximation

The continuum approximation should be valid for the case where the distance between particles is much
smaller than the Debye length. That is

lD � N−1/3; or l3D � N−1,

37and from equation (4.52)
8π3/2e3N1/2β3/2 � 1,

where β ≡ 1/kT.
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Chapter 5

Phase transitions

In this chapter we are concerned with changes of state such as gas-liquid and ferro-paramagnetic transfor-
mations.

5.1 Critical exponents

Critical points occur in a great variety of systems. The value of Tc depends on the details of the atomic or
molecular interactions of the system and hence will vary widely from one system to another. However there
is a considerable degree of similarity in the way systems approach a critical point: macroscopic variables
like specific heat or magnetic susceptibility either diverge or go to zero as T → Tc. We can characterise
this behaviour by the introduction of critical exponents.

We may represent any macroscopic variable by F (T ) and introduce the reduced temperature θc by

θc =
T − Tc

Tc

. (5.1)

Then a critical exponent s can be defined for θc ≈ 0 (i.e T ≈ Tc) by

F (θc) = Aθ−s
c , (5.2)

where A is a constant. We note that there are two broad cases as follows, depending only on the sign of
the critical exponent:

1. Critical exponent s is positive, F (θc) diverges as T → Tc.

2. Critical exponent s is negative, F (θc) → 0 as T → Tc.

Actually F may be expected to behave analytically away from the fixed point. With this in mind, we
can write it with greater range of validity as

F (θc) = Aθ−s
c (1 +Bθyc + ...), (5.3)

where y > 0 for analytic behaviour at large θc and B is a constant.
More formally, the critical exponent s of F (θc) is defined to be:

s = − lim
θC→0

lnF (θc)

ln θc
. (5.4)

Lastly, we should mention at this stage the idea of universality . The critical exponents are to a large
extent universal, depending only on the symmetry of the Hamiltonian and its dimension, provided the
interatomic forces are short range.
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5.2 The ferro-paramagnetic transition

When a piece of ferromagnetic material is placed in a magnetic field B, a mean magnetizationM is induced
in the material which is proportional1 to B. Then, taking one coordinate axis along B, we can work with
the scalars B and M (assumed to be in the same direction!).

The relationship between the applied magnetic field and the resulting magnetization is given by the
isothermal susceptibility, as defined by the relation:

χ
T ≡

(
∂M

∂B

)

T

. (5.5)

Note this is an example of an response function. For a fluid, the analogous response function would be
the isothermal compressibility.

5.2.1 The microscopic picture

The basic model is that the magnetic material consists of N spins on a lattice and each has magnetic
moment µ0 (up or down), corresponding to the spin si at the lattice site labelled by i taking its permitted
values of Si = ±1. The instantaneous state at one lattice site is therefore given by

µ = ±µ0.

We may define the magnetisation M ,
M = Nµ̄,

where µ̄ is the average value of the magnetic moment at a lattice site.
It is helpful to consider two extreme cases, as follows:

• If all spins are oriented at random then µ̄ = 0 and soM = 0, and hence there is no net magnetization.

• If all spins are lined up then µ̄ = µ0 and so the net magnetization is M∞ = Nµ0, which is the largest
possible value and is often referred to as the saturation value.

In between these extremes there is an average magnetisation appropriate to the temperature of the
system, thus:

µ̄ =
∑
states

P (µ)µ. (5.6)

This dependence on temperature is illustrated qualitatively in Figure 5.1.

5.3 The Weiss theory of ferromagnetism

The Weiss theory dates from 1907, before the formulation of quantum mechanics, so we shall present a
slightly modernized version which acknowledges the existence of quantum physics.

5.3.1 The ferro-paramagnetic transition: theoretical aims

As mentioned in Section 2.4, when a piece of ferromagnetic material is placed in a magnetic field B, a
mean magnetization M is induced in the material which is proportional to B. Then, taking one coordinate
axis along B, we can work with the scalars B and M which we assume to be in the same direction.

Our general theoretical aim will be to obtain an expression relating the magnetization to the applied
field. However in order to have a specific objective, we will seek a value of the critical temperature Tc,
above which spontaneous magnetization cannot exist.

1We are assuming here that the magnetic material is isotropic
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mean magnetization M is induced in the material which is proportional to B. Then, taking one coordinate
axis along B, we can work with the scalars B and M which we assume to be in the same direction.

Our general theoretical aim will be to obtain an expression relating the magnetization to the applied
field. However in order to have a specific objective, we will seek a value of the critical temperature Tc,
above which spontaneous magnetization cannot exist.

1We are assuming here that the magnetic material is isotropic
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Figure 5.1: Magnetization as a function of temperature.

5.3.2 The molecular field B
′

We assume that any spin experiences an effective magnetic field BE, which is made up of an externally
applied field B and a molecular field B′ due to spin-spin interactions.

This is the mean-field approximation.

That is, identifying the ‘magnetic energy’ as

H = −µBE, (5.7)

the effective field is given by
BE = B + B′. (5.8)

At thermal equilibrium the probability of any value of the magnetic moment is given by equations (2.33)
and (2.34), suitably adapted to the magnetic case, thus;

P (µ) = eµBE/kT/
∑
states

eµBE/kT . (5.9)

Hence the mean value of the individual magnetic moments is

µ̄ =
∑
states

µeµBE/kT/
∑
states

eµBE/kT . (5.10)

The possible states of the individual magnetic moments are given by µ = ±µ0, hence the expression for
the mean magnetization becomes

µ̄ =
µ0e

µ0BE/kT − µ0e
−µ0BE/kT

eµ0BE/kT + e−µ0BE/kT
, (5.11)

and so
µ̄ = µ0 tanh

[ µ0

kT
(B + B′)

]
. (5.12)
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Figure 5.1: Magnetization as a function of temperature.

5.3.2 The molecular field B
′

We assume that any spin experiences an effective magnetic field BE, which is made up of an externally
applied field B and a molecular field B′ due to spin-spin interactions.

This is the mean-field approximation.

That is, identifying the ‘magnetic energy’ as

H = −µBE, (5.7)

the effective field is given by
BE = B + B′. (5.8)

At thermal equilibrium the probability of any value of the magnetic moment is given by equations (2.33)
and (2.34), suitably adapted to the magnetic case, thus;

P (µ) = eµBE/kT/
∑
states

eµBE/kT . (5.9)

Hence the mean value of the individual magnetic moments is

µ̄ =
∑
states

µeµBE/kT/
∑
states

eµBE/kT . (5.10)

The possible states of the individual magnetic moments are given by µ = ±µ0, hence the expression for
the mean magnetization becomes

µ̄ =
µ0e

µ0BE/kT − µ0e
−µ0BE/kT

eµ0BE/kT + e−µ0BE/kT
, (5.11)

and so
µ̄ = µ0 tanh

[ µ0

kT
(B + B′)

]
. (5.12)

41
Or, in terms of the total magnetisation of the specimen, we may write this as

M = Nµ̄ = Nµ0 tanh
[ µ0

kT
(B + B′)

]
. (5.13)

But Nµ0 = M∞ is the saturation value and hence we have

M = M∞ tanh
[ µ0

kT
(B + B′)

]
, (5.14)

which gives the magnetisation at any temperature T as a fraction of the saturation magnetisation, in terms
of the applied field B and the unknown molecular field B′. This means, of course, that we only have one
equation for two unknowns, M and B′.

5.3.3 The self-consistent assumption: B
′ ∝ M

We are interested in the case where there is permanent magnetization which can be detected even when the
external field B has been set to zero. Under these circumstances, the molecular field and the magnetization
must be related to each other in some way. The self-consistent step which can close equation (5.14) is
to assume that B′ is a function of M , and the simplest such assumption is B′ ∝ M . This is such an
important step that we highlight it as:

self-consistent assumption: B
′ ∝ M .

We can identify the constant of proportionality in such a relationship as follows. For any one spin at
a lattice site,

• Let z be the number of neighbouring spins;

• Let z+ be the number of neighbouring spins up;

• Let z− be the number of neighbouring spins down.

Hence we may write
z+ − z−

z
=

M

M∞
,

and so

z+ − z− = z
M

M∞
. (5.15)

On this picture the average energy of interaction of one spin with its neighbours is

∆E = ±µ0B
′

and, from a microscopic point of view, we can express this in terms of the quantum-mechanical exchange
interaction as

∆E = J(z+ − z−).

where J is sometimes called the exchange coupling constant and has the dimension of an energy.
Equating these two expressions gives us

µ0B
′ = J(z+ − z−). (5.16)

From this result, and using equation (5.15) for (z+ − z−), we obtain an expression for the molecular field
as

B′ =
J

µ0

(z+ − z−) =
J

µ0

z
M

M∞
. (5.17)
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Or, in terms of the total magnetisation of the specimen, we may write this as

M = Nµ̄ = Nµ0 tanh
[ µ0

kT
(B + B′)

]
. (5.13)

But Nµ0 = M∞ is the saturation value and hence we have

M = M∞ tanh
[ µ0

kT
(B + B′)

]
, (5.14)

which gives the magnetisation at any temperature T as a fraction of the saturation magnetisation, in terms
of the applied field B and the unknown molecular field B′. This means, of course, that we only have one
equation for two unknowns, M and B′.

5.3.3 The self-consistent assumption: B
′ ∝ M

We are interested in the case where there is permanent magnetization which can be detected even when the
external field B has been set to zero. Under these circumstances, the molecular field and the magnetization
must be related to each other in some way. The self-consistent step which can close equation (5.14) is
to assume that B′ is a function of M , and the simplest such assumption is B′ ∝ M . This is such an
important step that we highlight it as:

self-consistent assumption: B
′ ∝ M .

We can identify the constant of proportionality in such a relationship as follows. For any one spin at
a lattice site,

• Let z be the number of neighbouring spins;

• Let z+ be the number of neighbouring spins up;

• Let z− be the number of neighbouring spins down.

Hence we may write
z+ − z−

z
=

M

M∞
,

and so

z+ − z− = z
M

M∞
. (5.15)

On this picture the average energy of interaction of one spin with its neighbours is

∆E = ±µ0B
′

and, from a microscopic point of view, we can express this in terms of the quantum-mechanical exchange
interaction as

∆E = J(z+ − z−).

where J is sometimes called the exchange coupling constant and has the dimension of an energy.
Equating these two expressions gives us

µ0B
′ = J(z+ − z−). (5.16)

From this result, and using equation (5.15) for (z+ − z−), we obtain an expression for the molecular field
as

B′ =
J

µ0

(z+ − z−) =
J

µ0

z
M

M∞
. (5.17)

42

Download free eBooks at bookboon.com



Study notes for Statistical Physics:  
A concise, unified overview of the subject

59 

Phase transitions

X

tanh(aX)

X=X

a>1

a=1

a<1

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 5.2: Graphical solutions of equation (5.19). Note that here a = Tc/T .

Lastly, we substitute for B′ into equation for M :

M

M∞
= tanh

[
µ0

kT

(
B +

Jz

µ0

· M

M∞

)]
, (5.18)

and obtain a closed equation for the magnetisation of the system. For spontaneous magnetization, we
have B = 0, and so

M

M∞
= tanh

[
Jz

kT
· M

M∞

]
. (5.19)

We may solve this for the critical temperature for spontaneous magnetization. We note that the result
depends on the coupling strength J and the number of nearest neighbours (in other words, the lattice type)
but not on µ0. The simplest method is graphical. The spontaneous magnetisation is given by plotting the
graph of

X = tanh

(
zJ

kT
X

)
(5.20)

and looking for the intersection with the straight line

X = Ms/M∞,

where Ms is the spontaneous magnetisation.

43

5.3.4 Graphical solution for the critical temperature Tc

Let us anticipate the fact that equation (5.19) can be solved for the critical temperature Tc and rewrite it
as:

X = tanh

(
Tc

T
X

)
(5.21)

where

Tc =
zJ

k
. (5.22)

We note that in general Tc depends on the lattice type (simple cubic, body-centered cubic etc.,) through
the parameter z, the strength of the interaction J and the Boltzmann constant k.

Now, for the case T = Tc, equation (5.16) reduces to

X = tanhX,

and for small values of X, this becomes
X = X

and the only possible solution is X = 0, corresponding to there being no mean magnetization. In general
this is true for Tc/T ≤ 1 and the only possibility of an intersection at non-zero X is for Tc/T > 1, as
shown in Figure 5.2. We can summarize the situation as follows:

• T > Tc X = 0, M = 0: disordered phase;

• T < Tc X �= 0, M �= 0: ordered phase.

As the transition from a disordered to an ordered phase is from a more symmetric to a less symmetric
state, such transitions are often referred to as symmetry-breaking.

5.4 Macroscopic mean field theory: the Landau model for phase transitions

As a preliminary to the Landau model, we introduce the theoretical aims: we wish to calculate the critical
exponents of the system.

5.4.1 The theoretical objective: critical exponents

We have met the concept of critical exponents in Section 5.1. Here we shall introduce four critical expo-
nents, viz., those associated respectively with the heat capacity CB, the magnetizationM , the susceptibility
χ and the equation of state, which is the relationship between the applied field B and the magnetization.
The defining relationships, which are no more than an arbitrary way of correlating experimental data, may
be listed as follows:

CB ∼
∣∣∣∣
T − Tc

Tc

∣∣∣∣
−α

; (5.23)

M ∼ −
(
T − Tc

Tc

)β

; (5.24)

χ
T ∼

∣∣∣∣
T − Tc

Tc

∣∣∣∣
−γ

; (5.25)

and
B ∼ |M |δ sgnM, (5.26)

where sgn is the signum, or sign, function. These relationships define the exponents α, β, γ and δ.
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5.3.4 Graphical solution for the critical temperature Tc

Let us anticipate the fact that equation (5.19) can be solved for the critical temperature Tc and rewrite it
as:

X = tanh

(
Tc

T
X

)
(5.21)

where

Tc =
zJ

k
. (5.22)

We note that in general Tc depends on the lattice type (simple cubic, body-centered cubic etc.,) through
the parameter z, the strength of the interaction J and the Boltzmann constant k.

Now, for the case T = Tc, equation (5.16) reduces to

X = tanhX,

and for small values of X, this becomes
X = X

and the only possible solution is X = 0, corresponding to there being no mean magnetization. In general
this is true for Tc/T ≤ 1 and the only possibility of an intersection at non-zero X is for Tc/T > 1, as
shown in Figure 5.2. We can summarize the situation as follows:

• T > Tc X = 0, M = 0: disordered phase;

• T < Tc X �= 0, M �= 0: ordered phase.

As the transition from a disordered to an ordered phase is from a more symmetric to a less symmetric
state, such transitions are often referred to as symmetry-breaking.

5.4 Macroscopic mean field theory: the Landau model for phase transitions

As a preliminary to the Landau model, we introduce the theoretical aims: we wish to calculate the critical
exponents of the system.

5.4.1 The theoretical objective: critical exponents

We have met the concept of critical exponents in Section 5.1. Here we shall introduce four critical expo-
nents, viz., those associated respectively with the heat capacity CB, the magnetizationM , the susceptibility
χ and the equation of state, which is the relationship between the applied field B and the magnetization.
The defining relationships, which are no more than an arbitrary way of correlating experimental data, may
be listed as follows:

CB ∼
∣∣∣∣
T − Tc

Tc

∣∣∣∣
−α

; (5.23)

M ∼ −
(
T − Tc

Tc

)β

; (5.24)

χ
T ∼

∣∣∣∣
T − Tc

Tc

∣∣∣∣
−γ

; (5.25)

and
B ∼ |M |δ sgnM, (5.26)

where sgn is the signum, or sign, function. These relationships define the exponents α, β, γ and δ.
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5.3.4 Graphical solution for the critical temperature Tc

Let us anticipate the fact that equation (5.19) can be solved for the critical temperature Tc and rewrite it
as:

X = tanh

(
Tc

T
X

)
(5.21)

where

Tc =
zJ

k
. (5.22)

We note that in general Tc depends on the lattice type (simple cubic, body-centered cubic etc.,) through
the parameter z, the strength of the interaction J and the Boltzmann constant k.

Now, for the case T = Tc, equation (5.16) reduces to

X = tanhX,

and for small values of X, this becomes
X = X

and the only possible solution is X = 0, corresponding to there being no mean magnetization. In general
this is true for Tc/T ≤ 1 and the only possibility of an intersection at non-zero X is for Tc/T > 1, as
shown in Figure 5.2. We can summarize the situation as follows:

• T > Tc X = 0, M = 0: disordered phase;

• T < Tc X �= 0, M �= 0: ordered phase.

As the transition from a disordered to an ordered phase is from a more symmetric to a less symmetric
state, such transitions are often referred to as symmetry-breaking.

5.4 Macroscopic mean field theory: the Landau model for phase transitions

As a preliminary to the Landau model, we introduce the theoretical aims: we wish to calculate the critical
exponents of the system.

5.4.1 The theoretical objective: critical exponents

We have met the concept of critical exponents in Section 5.1. Here we shall introduce four critical expo-
nents, viz., those associated respectively with the heat capacity CB, the magnetizationM , the susceptibility
χ and the equation of state, which is the relationship between the applied field B and the magnetization.
The defining relationships, which are no more than an arbitrary way of correlating experimental data, may
be listed as follows:

CB ∼
∣∣∣∣
T − Tc

Tc

∣∣∣∣
−α

; (5.23)

M ∼ −
(
T − Tc

Tc

)β

; (5.24)

χ
T ∼

∣∣∣∣
T − Tc

Tc

∣∣∣∣
−γ

; (5.25)

and
B ∼ |M |δ sgnM, (5.26)

where sgn is the signum, or sign, function. These relationships define the exponents α, β, γ and δ.
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Figure 5.3: Possible variations of the free energy F with the magnetization M .

5.4.2 Approximation for the free energy F

This theory is restricted to symmetry-breaking transitions, where the free energy F and its first derivatives
vary continuously through the phase transition. We shall consider a ferromagnet in zero external field as
an example. Let us assume that F is analytic in M near the transition point, so that we may expand the
free energy in powers of the magnetization, as follows:

F (T,M) = F0(T ) + A2(T )M
2 + A4(T )M

4 + . . . (5.27)

We note that only even terms occur in the expansion, as F is a scalar and can only depend on scalar products 
of M. Referring to Figure 5.3, we see that in broad qualitative terms, there are only four possible ‘shapes’ for 
the variation of F with M, depending on the signs of the coefficients A2(T ) and A4(T ).

We may reject two of these cases immediately on purely physical grounds. That is, both cases with
A4 < 0 show decreasing F with increasing M . This is unstable behaviour, thus, for global stability , we
have the requirement:

A4 > 0.

Refer now to the two left hand graphs, where in both cases we have A4 > 0. We shall consider the two
cases separately:

Case 1. A2 > 0: Here F has a minimum F0 at M = 0. There is no permanent magnetization, so this
can be interpreted as the paramagnetic phase, hence we may assume that this case corresponds to
T > Tc.
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5.4.2 Approximation for the free energy F

This theory is restricted to symmetry-breaking transitions, where the free energy F and its first derivatives
vary continuously through the phase transition. We shall consider a ferromagnet in zero external field as
an example. Let us assume that F is analytic in M near the transition point, so that we may expand the
free energy in powers of the magnetization, as follows:

F (T,M) = F0(T ) + A2(T )M
2 + A4(T )M

4 + . . . (5.27)

We note that only even terms occur in the expansion, as F is a scalar and can only depend on scalar products 
of M. Referring to Figure 5.3, we see that in broad qualitative terms, there are only four possible ‘shapes’ for 
the variation of F with M, depending on the signs of the coefficients A2(T ) and A4(T ).

We may reject two of these cases immediately on purely physical grounds. That is, both cases with
A4 < 0 show decreasing F with increasing M . This is unstable behaviour, thus, for global stability , we
have the requirement:

A4 > 0.

Refer now to the two left hand graphs, where in both cases we have A4 > 0. We shall consider the two
cases separately:

Case 1. A2 > 0: Here F has a minimum F0 at M = 0. There is no permanent magnetization, so this
can be interpreted as the paramagnetic phase, hence we may assume that this case corresponds to
T > Tc.

45Case 2. A2 < 0: Here F has a maximum at M = 0, but two minima at ±M , corresponding to permanent
magnetization in one or other direction. Therefore we may interpret this as being the ferromagnetic
phase and assume that this case corresponds to T < Tc.

Thus we conclude that T = Tc corresponds to A2 = 0.

Now let us reconsider these two cases from a mathematical point of view. The conditions for F to be
minimised are:

∂F

∂M

)

T

= 0; ∂2F/∂M2)T > 0.

Accordingly, we differentiate the expression for F , as given by (5.27) to obtain:

∂F

∂M

)

T

= 2A2(T )M + 4A4(T )M
3, (5.28)

and re-examine our two cases:

Case 1. Here we have A2 > 0, T > Tc and clearly,

∂F

∂M

)

T

= 0, if and only if, M = 0,

as M and M3 have the same sign, and A2 and A4 are both positive, therefore no cancellations are
possible.

Case 2. Here we have A2 < 0, T < Tc and it follows that

∂F/∂M)T = 0;

if
−2A2M+ 4A4M

2M = 0,

or
M = ±(−A2/2A4)

1/2M̂,

where M̂ is a unit vector in the direction of M. The change of sign of A2 at T = Tc, implies that an
expansion of the coefficient A2(T ) in powers of the temperature should take the form

A2(T ) = A20(T − Tc) + higher order terms. (5.29)

We may summarise all this as follows:

For T ≥ Tc:
F (T,M) = F0(T ),

and this corresponds to M = 0 which is the paramagnetic phase.

For T ≤ Tc:
F (T,M) = F0(T ) + A2(T )M

2 + . . . ,

and this corresponds to
M2 = −A2/2A4,

with
A2 = A20(T − Tc).

Evidently this is the ferromagnetic phase.

Equation (5.27) for the free energy may now be written as

F (T,M) = F0(T )− (A2
20/2A4)(T − Tc)

2 + . . . (5.30)

Note that the equation of state may be obtained from this result by using the relationship B = −∂F/∂M)T .
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Case 2. A2 < 0: Here F has a maximum at M = 0, but two minima at ±M , corresponding to permanent
magnetization in one or other direction. Therefore we may interpret this as being the ferromagnetic
phase and assume that this case corresponds to T < Tc.

Thus we conclude that T = Tc corresponds to A2 = 0.

Now let us reconsider these two cases from a mathematical point of view. The conditions for F to be
minimised are:

∂F

∂M

)

T

= 0; ∂2F/∂M2)T > 0.

Accordingly, we differentiate the expression for F , as given by (5.27) to obtain:

∂F

∂M

)

T

= 2A2(T )M + 4A4(T )M
3, (5.28)

and re-examine our two cases:

Case 1. Here we have A2 > 0, T > Tc and clearly,

∂F

∂M

)

T

= 0, if and only if, M = 0,

as M and M3 have the same sign, and A2 and A4 are both positive, therefore no cancellations are
possible.

Case 2. Here we have A2 < 0, T < Tc and it follows that

∂F/∂M)T = 0;

if
−2A2M+ 4A4M

2M = 0,

or
M = ±(−A2/2A4)

1/2M̂,

where M̂ is a unit vector in the direction of M. The change of sign of A2 at T = Tc, implies that an
expansion of the coefficient A2(T ) in powers of the temperature should take the form

A2(T ) = A20(T − Tc) + higher order terms. (5.29)

We may summarise all this as follows:

For T ≥ Tc:
F (T,M) = F0(T ),

and this corresponds to M = 0 which is the paramagnetic phase.

For T ≤ Tc:
F (T,M) = F0(T ) + A2(T )M

2 + . . . ,

and this corresponds to
M2 = −A2/2A4,

with
A2 = A20(T − Tc).

Evidently this is the ferromagnetic phase.

Equation (5.27) for the free energy may now be written as

F (T,M) = F0(T )− (A2
20/2A4)(T − Tc)

2 + . . . (5.30)

Note that the equation of state may be obtained from this result by using the relationship B = −∂F/∂M)T .

465.4.3 Values of critical exponents

Equilibrium magnetization corresponds to minimum free energy. From equations (5.29) and (5.30):

dF

dM
= 2A2M + 4A4M

3 = 0

= 2A20(T − Tc)M + 4A4M
3,

and so
M = 0 or M2 ∼ (T − Tc).

Hence
M ∼ (T − Tc)

1/2 ∼ θ1/2c ,

and from (5.24) we identify the exponent β as:

β = 1/2.

To obtain γ and δ, we add a magnetic term due to an external field B; thus:

F = F0 + A20(T − Tc)M
2 + A4M

4 − BM,

and hence
dF

dM
= −B + 2A20(T − Tc)M + 4A4M

3 = 0.

For the critical isotherm, T = Tc and so B ∼ M3; or:

δ = 3.

Lastly, as

χ =
∂M

∂B

)

T

,

we differentiate both sides of the equation for equilibrium magnetization with respect to B:

1 = 2A20(T − Tc)
∂M

∂B

)

T

+ 12A4M
2 ∂M

∂B

)

T

,

and so,
χ =

(
2A2Tcθc + 12A4M

2
)−1

= 1,

and from (5.25):
γ = 1.

These values may be compared with the experimental values: β = 0.3− 0.4, δ = 4− 5, and γ = 1.2− 1.4.

5.5 Theoretical models

We have previously introduced the idea of models for magnetic systems in an informal way. Now we
introduce the idea more formally. This includes the use of the term ‘Hamiltonian’, although we shall still
mean by this the energy. Remember that for quantum systems, the Hamiltonian is an operator and the
energy is its eigenvalue.

We begin by noting that the microscopic behaviour of assemblies can often be regarded as ‘classical’
rather than ‘quantum mechanical’ for the following reasons:

• Thermal fluctuations are often much larger than quantum fluctuations.

• Classical uncertainty in the large-N limit overpowers the quantum uncertainty.
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5.4.3 Values of critical exponents

Equilibrium magnetization corresponds to minimum free energy. From equations (5.29) and (5.30):

dF

dM
= 2A2M + 4A4M

3 = 0

= 2A20(T − Tc)M + 4A4M
3,

and so
M = 0 or M2 ∼ (T − Tc).

Hence
M ∼ (T − Tc)

1/2 ∼ θ1/2c ,

and from (5.24) we identify the exponent β as:

β = 1/2.

To obtain γ and δ, we add a magnetic term due to an external field B; thus:

F = F0 + A20(T − Tc)M
2 + A4M

4 − BM,

and hence
dF

dM
= −B + 2A20(T − Tc)M + 4A4M

3 = 0.

For the critical isotherm, T = Tc and so B ∼ M3; or:

δ = 3.

Lastly, as

χ =
∂M

∂B

)

T

,

we differentiate both sides of the equation for equilibrium magnetization with respect to B:

1 = 2A20(T − Tc)
∂M

∂B

)

T

+ 12A4M
2 ∂M

∂B

)

T

,

and so,
χ =

(
2A2Tcθc + 12A4M

2
)−1

= 1,

and from (5.25):
γ = 1.

These values may be compared with the experimental values: β = 0.3− 0.4, δ = 4− 5, and γ = 1.2− 1.4.

5.5 Theoretical models

We have previously introduced the idea of models for magnetic systems in an informal way. Now we
introduce the idea more formally. This includes the use of the term ‘Hamiltonian’, although we shall still
mean by this the energy. Remember that for quantum systems, the Hamiltonian is an operator and the
energy is its eigenvalue.

We begin by noting that the microscopic behaviour of assemblies can often be regarded as ‘classical’
rather than ‘quantum mechanical’ for the following reasons:

• Thermal fluctuations are often much larger than quantum fluctuations.

• Classical uncertainty in the large-N limit overpowers the quantum uncertainty.

47• The complexity of the micro-structure of the assembly introduces its own uncertainty.

We can set up theoretical models which should be:

(a) physically representative of the system to some reasonable degree of approximation;

(b) soluble.

But, usually (b) is incompatible with (a) and attempting to reconcile the two usually involves some form of
perturbation theory. In practice, one sacrifices some degree of physical ‘correctness’ in order to be able to
solve the model. Invariably, by ‘solve’, we mean that we can obtain a good approximation to the partition
function.

5.6 The Ising model

This is the most widely studied model in statistical field theory, including both the theory of critical
phemomena and particle theory. So naturally it is the one which we shall concentrate on here. The
Hamiltonian can be written for the generic Ising model as

H = −
∑
〈i,j〉

JijSiSj −
∑
i

BiSi, (5.31)

such that Si = ±1,

where the restriction to nearest-neighbour pairs of spins in the double sum is indicated by the use of angle
brackets to enclose the indices i and j. As we shall see later, there are other ways in which this restriction
can be indicated.

The Ising model is really a family of models, the individual members being determined by our choice
of the dimensionality d. We begin by summarising a few features of the model for each value of d.

• d = 1 In this case we envisage a line of spins each either up or down. It presents a very simple problem
and can be solved exactly. But, although its solution is of considerable pedagogical importance, the
model does not exhibit a phase change2.

• d = 2 In two dimensions, the Ising model can be thought of as an array of spins on a square lattice,
with each lattice site having an associated spin vector up or down at right angles to the plane of the
array. This model is more realistic in that a phase transition appears in the thermodynamic limit.
It was solved exactly by Onsager (1944) and this work is still regarded as a theoretical tour de force.

• d ≥ 3 These cases are more difficult to draw but at least the three-dimensional problem is easily
visualized. One simply imagines a cubic lattice with the three main coordinate directions correspond-
ing to the cartesian coordinate axes x, y, and z. Then we assume that unit spin vectors at each
lattice site can point in the directions of ±z. The Ising models for d ≥ 3 cannot be solved exactly
but they can be treated numerically, and numerical simulation of Ising models is a very active area
of statistical physics. It turns out that mean-field theory gives a reasonable approximation to the
partition function for d = 3 and a very good approximation for d ≥ 4.

5.7 Mean-field theory with a variational principle

This is a more modern version of the Weiss theory and has the advantage that it can be used to work out
correlations, although we shall not do that in the present book.

2It is sometimes said that there is a phase change at T = 0, but in any model the spins will be aligned at zero temperature,
so arguably this is a rather trivial example of a phase transition.
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• The complexity of the micro-structure of the assembly introduces its own uncertainty.

We can set up theoretical models which should be:

(a) physically representative of the system to some reasonable degree of approximation;

(b) soluble.

But, usually (b) is incompatible with (a) and attempting to reconcile the two usually involves some form of
perturbation theory. In practice, one sacrifices some degree of physical ‘correctness’ in order to be able to
solve the model. Invariably, by ‘solve’, we mean that we can obtain a good approximation to the partition
function.

5.6 The Ising model

This is the most widely studied model in statistical field theory, including both the theory of critical
phemomena and particle theory. So naturally it is the one which we shall concentrate on here. The
Hamiltonian can be written for the generic Ising model as

H = −
∑
〈i,j〉

JijSiSj −
∑
i

BiSi, (5.31)

such that Si = ±1,

where the restriction to nearest-neighbour pairs of spins in the double sum is indicated by the use of angle
brackets to enclose the indices i and j. As we shall see later, there are other ways in which this restriction
can be indicated.

The Ising model is really a family of models, the individual members being determined by our choice
of the dimensionality d. We begin by summarising a few features of the model for each value of d.

• d = 1 In this case we envisage a line of spins each either up or down. It presents a very simple problem
and can be solved exactly. But, although its solution is of considerable pedagogical importance, the
model does not exhibit a phase change2.

• d = 2 In two dimensions, the Ising model can be thought of as an array of spins on a square lattice,
with each lattice site having an associated spin vector up or down at right angles to the plane of the
array. This model is more realistic in that a phase transition appears in the thermodynamic limit.
It was solved exactly by Onsager (1944) and this work is still regarded as a theoretical tour de force.

• d ≥ 3 These cases are more difficult to draw but at least the three-dimensional problem is easily
visualized. One simply imagines a cubic lattice with the three main coordinate directions correspond-
ing to the cartesian coordinate axes x, y, and z. Then we assume that unit spin vectors at each
lattice site can point in the directions of ±z. The Ising models for d ≥ 3 cannot be solved exactly
but they can be treated numerically, and numerical simulation of Ising models is a very active area
of statistical physics. It turns out that mean-field theory gives a reasonable approximation to the
partition function for d = 3 and a very good approximation for d ≥ 4.

5.7 Mean-field theory with a variational principle

This is a more modern version of the Weiss theory and has the advantage that it can be used to work out
correlations, although we shall not do that in the present book.

2It is sometimes said that there is a phase change at T = 0, but in any model the spins will be aligned at zero temperature,
so arguably this is a rather trivial example of a phase transition.
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5.7.1 The Bogoliubov variational theorem

The exact Hamiltonian for an interacting system is often taken to be of the form:

H =
N∑
i=1

Hi +
∑
i,j

Hi,j. (5.32)

Let us choose a model Hamiltonian of the form

H(λ) = H0 + λHI , (5.33)

such that
0 ≤ λ ≤ 1,

where H is exact, H0 is soluble, HI is the correction term and λ is a variable control parameter. The
Bogoliubov theorem can be stated in terms of the Helmholtz free energy F as:

F ≤ F0 + 〈HI〉0, (5.34)

where F0 is the free energy of the soluble system with Hamiltonian H0, and the ground-state expectation
value of the correction term is given by

〈HI〉0 =
tr HIe

−βH0

tr e−βH0
. (5.35)

(Note those unfamiliar with the ‘density matrix’ notation, may just interpret ‘tr’ as standing for ‘sum over
levels’.)

This procedure may be interpreted as follows:

1. We are evaluating our estimate of the exact free energy F using the full Hamiltonian H = H0+λHI ,
but only the ground-state (i.e. non-interacting) probability distribution associated with the soluble
model Hamiltonian H0.

2. Then equation (5.35) gives us a rigorous upper bound on our estimate of the free energy corresponding
to the exact Hamiltonian.

Our strategy now involves the following steps:

• Choose a trial Hamiltonian H0 which is soluble.

• Use our freedom to vary the control parameter λ in order to minimise the quantity on the right hand
side of the Bogoliubov inequality, as given in (5.35).

Then, in this way, we obtain our best estimate of the exact free energy F for a given choice of soluble
model Hamiltonian H0.

5.7.2 Mean-field theory of the Ising model

We consider the Ising model with external magnetic field B. The Hamiltonian may be written in the
slightly different form:

H = −
∑
i,j

JijSiSj − B
∑
j

Sj, (5.36)

where

• Jij = J if i, j are nearest neighbours

• Jij = 0 if i, j are NOT nearest neighbours.
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• The complexity of the micro-structure of the assembly introduces its own uncertainty.

We can set up theoretical models which should be:

(a) physically representative of the system to some reasonable degree of approximation;

(b) soluble.

But, usually (b) is incompatible with (a) and attempting to reconcile the two usually involves some form of
perturbation theory. In practice, one sacrifices some degree of physical ‘correctness’ in order to be able to
solve the model. Invariably, by ‘solve’, we mean that we can obtain a good approximation to the partition
function.

5.6 The Ising model

This is the most widely studied model in statistical field theory, including both the theory of critical
phemomena and particle theory. So naturally it is the one which we shall concentrate on here. The
Hamiltonian can be written for the generic Ising model as

H = −
∑
〈i,j〉

JijSiSj −
∑
i

BiSi, (5.31)

such that Si = ±1,

where the restriction to nearest-neighbour pairs of spins in the double sum is indicated by the use of angle
brackets to enclose the indices i and j. As we shall see later, there are other ways in which this restriction
can be indicated.

The Ising model is really a family of models, the individual members being determined by our choice
of the dimensionality d. We begin by summarising a few features of the model for each value of d.

• d = 1 In this case we envisage a line of spins each either up or down. It presents a very simple problem
and can be solved exactly. But, although its solution is of considerable pedagogical importance, the
model does not exhibit a phase change2.

• d = 2 In two dimensions, the Ising model can be thought of as an array of spins on a square lattice,
with each lattice site having an associated spin vector up or down at right angles to the plane of the
array. This model is more realistic in that a phase transition appears in the thermodynamic limit.
It was solved exactly by Onsager (1944) and this work is still regarded as a theoretical tour de force.

• d ≥ 3 These cases are more difficult to draw but at least the three-dimensional problem is easily
visualized. One simply imagines a cubic lattice with the three main coordinate directions correspond-
ing to the cartesian coordinate axes x, y, and z. Then we assume that unit spin vectors at each
lattice site can point in the directions of ±z. The Ising models for d ≥ 3 cannot be solved exactly
but they can be treated numerically, and numerical simulation of Ising models is a very active area
of statistical physics. It turns out that mean-field theory gives a reasonable approximation to the
partition function for d = 3 and a very good approximation for d ≥ 4.

5.7 Mean-field theory with a variational principle

This is a more modern version of the Weiss theory and has the advantage that it can be used to work out
correlations, although we shall not do that in the present book.

2It is sometimes said that there is a phase change at T = 0, but in any model the spins will be aligned at zero temperature,
so arguably this is a rather trivial example of a phase transition.
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5.7.1 The Bogoliubov variational theorem

The exact Hamiltonian for an interacting system is often taken to be of the form:

H =
N∑
i=1

Hi +
∑
i,j

Hi,j. (5.32)

Let us choose a model Hamiltonian of the form

H(λ) = H0 + λHI , (5.33)

such that
0 ≤ λ ≤ 1,

where H is exact, H0 is soluble, HI is the correction term and λ is a variable control parameter. The
Bogoliubov theorem can be stated in terms of the Helmholtz free energy F as:

F ≤ F0 + 〈HI〉0, (5.34)

where F0 is the free energy of the soluble system with Hamiltonian H0, and the ground-state expectation
value of the correction term is given by

〈HI〉0 =
tr HIe

−βH0

tr e−βH0
. (5.35)

(Note those unfamiliar with the ‘density matrix’ notation, may just interpret ‘tr’ as standing for ‘sum over
levels’.)

This procedure may be interpreted as follows:

1. We are evaluating our estimate of the exact free energy F using the full Hamiltonian H = H0+λHI ,
but only the ground-state (i.e. non-interacting) probability distribution associated with the soluble
model Hamiltonian H0.

2. Then equation (5.35) gives us a rigorous upper bound on our estimate of the free energy corresponding
to the exact Hamiltonian.

Our strategy now involves the following steps:

• Choose a trial Hamiltonian H0 which is soluble.

• Use our freedom to vary the control parameter λ in order to minimise the quantity on the right hand
side of the Bogoliubov inequality, as given in (5.35).

Then, in this way, we obtain our best estimate of the exact free energy F for a given choice of soluble
model Hamiltonian H0.

5.7.2 Mean-field theory of the Ising model

We consider the Ising model with external magnetic field B. The Hamiltonian may be written in the
slightly different form:

H = −
∑
i,j

JijSiSj − B
∑
j

Sj, (5.36)

where

• Jij = J if i, j are nearest neighbours

• Jij = 0 if i, j are NOT nearest neighbours.
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5.7.1 The Bogoliubov variational theorem

The exact Hamiltonian for an interacting system is often taken to be of the form:

H =
N∑
i=1

Hi +
∑
i,j

Hi,j. (5.32)

Let us choose a model Hamiltonian of the form

H(λ) = H0 + λHI , (5.33)

such that
0 ≤ λ ≤ 1,

where H is exact, H0 is soluble, HI is the correction term and λ is a variable control parameter. The
Bogoliubov theorem can be stated in terms of the Helmholtz free energy F as:

F ≤ F0 + 〈HI〉0, (5.34)

where F0 is the free energy of the soluble system with Hamiltonian H0, and the ground-state expectation
value of the correction term is given by

〈HI〉0 =
tr HIe

−βH0

tr e−βH0
. (5.35)

(Note those unfamiliar with the ‘density matrix’ notation, may just interpret ‘tr’ as standing for ‘sum over
levels’.)

This procedure may be interpreted as follows:

1. We are evaluating our estimate of the exact free energy F using the full Hamiltonian H = H0+λHI ,
but only the ground-state (i.e. non-interacting) probability distribution associated with the soluble
model Hamiltonian H0.

2. Then equation (5.35) gives us a rigorous upper bound on our estimate of the free energy corresponding
to the exact Hamiltonian.

Our strategy now involves the following steps:

• Choose a trial Hamiltonian H0 which is soluble.

• Use our freedom to vary the control parameter λ in order to minimise the quantity on the right hand
side of the Bogoliubov inequality, as given in (5.35).

Then, in this way, we obtain our best estimate of the exact free energy F for a given choice of soluble
model Hamiltonian H0.

5.7.2 Mean-field theory of the Ising model

We consider the Ising model with external magnetic field B. The Hamiltonian may be written in the
slightly different form:

H = −
∑
i,j

JijSiSj − B
∑
j

Sj, (5.36)

where

• Jij = J if i, j are nearest neighbours

• Jij = 0 if i, j are NOT nearest neighbours.

49Note that this is yet another way of specifying the sum over nearest-neighbour pairs of spins!
In order to reduce the Hamiltonian to a diagonal form, we choose the unperturbed model for H to be

H0 = −
∑
j

B′Sj − B
∑
j

Sj, (5.37)

where B′ is the ‘collective field’ representing the effect of all the other spins with labels i �= j on the spin
at the lattice site j. Sometimes it is convenient to lump the two magnetic fields together as an ‘effective
field’ BE, viz.,

BE = B
′
+ B. (5.38)

Now we can work out our upper bound for the system free energy F , using the statistics of the model
system. First we obtain the partition function Z0 for the ground-state case, thus:

Z0 = tre−βH0 = [eβBE + e−βBE ]N , (5.39)

where we have summed over the two spin states of S = ±1. This may be further written as

Z0 = [2 cosh(βBE)]
N . (5.40)

The free energy F0 follows immediately from the bridge equation, as

F0 = −N

β
ln[2 cosh(βBE)]. (5.41)

Now from (5.35) the Bogoliubov inequality may be written in the form

F ≤ F0 + 〈HI〉0 ≤ F0 + 〈H −H0〉0, (5.42)

where we have simply re-expressed the correction term as the difference between the exact and model
system Hamiltonians. Then, in terms of equation (5.37) we may further rewrite this condition on the free
energy as:

F ≤ F0 −
∑
i,j

Jij〈SiSj〉0 + B′
∑
j

〈Sj〉0. (5.43)

We now work out averages over the model assembly, thus:
∑
j

〈Sj〉0 = N〈S〉0, (5.44)

and ∑
ij

Jij〈SiSj〉0 =
∑
ij

Jij〈Si〉0〈Sj〉0 =
JNz

2
〈S〉20, (5.45)

where we have made use of the statistical independence of Si and Sj, which is consistent with the statistics
of the zero-order (non-interacting) model, and z is the number of nearest neighbours. Then, substituting
these results into equation (5.43), we have

F ≤ F0 −
N

2
zJ〈S〉20 + B′N〈S〉0. (5.46)

We already know F0 from equation (5.41), while 〈S〉0 is easily worked out as:

〈S〉0 =
tr S exp(−βH0)

tr exp(−βH0)
=

tr S exp(+βBES)

tr exp(βBES)
, (5.47)

and the permissible spin states of the Ising model are S = ±1, hence:

〈S〉0 =
exp(βBE)− exp(−βBE)

exp(βBE) + exp(−βBE)
= tanh(βBE). (5.48)
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Note that this is yet another way of specifying the sum over nearest-neighbour pairs of spins!
In order to reduce the Hamiltonian to a diagonal form, we choose the unperturbed model for H to be

H0 = −
∑
j

B′Sj − B
∑
j

Sj, (5.37)

where B′ is the ‘collective field’ representing the effect of all the other spins with labels i �= j on the spin
at the lattice site j. Sometimes it is convenient to lump the two magnetic fields together as an ‘effective
field’ BE, viz.,

BE = B
′
+ B. (5.38)

Now we can work out our upper bound for the system free energy F , using the statistics of the model
system. First we obtain the partition function Z0 for the ground-state case, thus:

Z0 = tre−βH0 = [eβBE + e−βBE ]N , (5.39)

where we have summed over the two spin states of S = ±1. This may be further written as

Z0 = [2 cosh(βBE)]
N . (5.40)

The free energy F0 follows immediately from the bridge equation, as

F0 = −N

β
ln[2 cosh(βBE)]. (5.41)

Now from (5.35) the Bogoliubov inequality may be written in the form

F ≤ F0 + 〈HI〉0 ≤ F0 + 〈H −H0〉0, (5.42)

where we have simply re-expressed the correction term as the difference between the exact and model
system Hamiltonians. Then, in terms of equation (5.37) we may further rewrite this condition on the free
energy as:

F ≤ F0 −
∑
i,j

Jij〈SiSj〉0 + B′
∑
j

〈Sj〉0. (5.43)

We now work out averages over the model assembly, thus:
∑
j

〈Sj〉0 = N〈S〉0, (5.44)

and ∑
ij

Jij〈SiSj〉0 =
∑
ij

Jij〈Si〉0〈Sj〉0 =
JNz

2
〈S〉20, (5.45)

where we have made use of the statistical independence of Si and Sj, which is consistent with the statistics
of the zero-order (non-interacting) model, and z is the number of nearest neighbours. Then, substituting
these results into equation (5.43), we have

F ≤ F0 −
N

2
zJ〈S〉20 + B′N〈S〉0. (5.46)

We already know F0 from equation (5.41), while 〈S〉0 is easily worked out as:

〈S〉0 =
tr S exp(−βH0)

tr exp(−βH0)
=

tr S exp(+βBES)

tr exp(βBES)
, (5.47)

and the permissible spin states of the Ising model are S = ±1, hence:

〈S〉0 =
exp(βBE)− exp(−βBE)

exp(βBE) + exp(−βBE)
= tanh(βBE). (5.48)

505.7.3 The variational method

Our next step is to differentiate F (as given by (5.46) with the equality) with respect to B′ and set the
result equal to zero. Noting that B′ occurs as part of BE, the condition for an extremum can be written
as

∂F

∂BE

= 0, (5.49)

which becomes
∂F

∂BE

=
∂F0

∂BE

−NzJ〈S〉0
∂〈S〉0
∂BE

+ (BE − B)N
∂〈S〉0
∂BE

+N〈S〉0. (5.50)

From equation (5.41) for F0, we have:
∂F0

∂BE

= −N〈S〉0, (5.51)

which cancels the last term on the right hand side of equation (5.51), hence

∂F

∂BE

= (BE − B)N
∂〈S〉0
∂BE

−NzJ〈S〉0
∂〈S〉0
∂BE

= 0, (5.52)

and so
(BE − B) = zJ〈S〉0; (5.53)

or, with some rearrangement,
BE = B + zJ〈S〉0. (5.54)

In this model, the magnetisation is just the mean value of the spin, thus:

〈S〉0 = tanh(βBE) = tanh(βB + zJβ〈S〉0). (5.55)

In order to identify a phase transition, we put B = 0, and (8.30) becomes

〈S〉0 = tanh(zJβ〈S〉0), (5.56)

which is the same as our previous mean-field result as given by equation (5.14), with the replacement
of M/M∞ by 〈S〉0. We have therefore shown that the optimum value of the free energy with an F0

corresponding to independent spins is exactly that of mean-field theory.

5.8 Mean-field critical exponents for the Ising model

The exponents for the thermodynamic quantities can be obtained quite easily from our present results.
However, to get the exponents associated with the correlation function η and the correlation length ν we
need to obtain expressions for these quantities. We begin with the easier ones!

5.8.1 α, β, γ and δ

CASE 1: α

For B = 0, we have H = −J
∑

〈i,j〉 SiSj where
∑

〈i,j〉 is the sum over nearest neighbours. The mean
energy of the system is given by

E = 〈H〉 = −J
∑
〈i,j〉

〈SiSj〉.

In lowest-order mean field approximation, the spins are independent and so we may factorize as:

〈SiSj〉 = 〈Si〉〈Sj〉.
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5.7.3 The variational method

Our next step is to differentiate F (as given by (5.46) with the equality) with respect to B′ and set the
result equal to zero. Noting that B′ occurs as part of BE, the condition for an extremum can be written
as

∂F

∂BE

= 0, (5.49)

which becomes
∂F

∂BE

=
∂F0

∂BE

−NzJ〈S〉0
∂〈S〉0
∂BE

+ (BE − B)N
∂〈S〉0
∂BE

+N〈S〉0. (5.50)

From equation (5.41) for F0, we have:
∂F0

∂BE

= −N〈S〉0, (5.51)

which cancels the last term on the right hand side of equation (5.51), hence

∂F

∂BE

= (BE − B)N
∂〈S〉0
∂BE

−NzJ〈S〉0
∂〈S〉0
∂BE

= 0, (5.52)

and so
(BE − B) = zJ〈S〉0; (5.53)

or, with some rearrangement,
BE = B + zJ〈S〉0. (5.54)

In this model, the magnetisation is just the mean value of the spin, thus:

〈S〉0 = tanh(βBE) = tanh(βB + zJβ〈S〉0). (5.55)

In order to identify a phase transition, we put B = 0, and (8.30) becomes

〈S〉0 = tanh(zJβ〈S〉0), (5.56)

which is the same as our previous mean-field result as given by equation (5.14), with the replacement
of M/M∞ by 〈S〉0. We have therefore shown that the optimum value of the free energy with an F0

corresponding to independent spins is exactly that of mean-field theory.

5.8 Mean-field critical exponents for the Ising model

The exponents for the thermodynamic quantities can be obtained quite easily from our present results.
However, to get the exponents associated with the correlation function η and the correlation length ν we
need to obtain expressions for these quantities. We begin with the easier ones!

5.8.1 α, β, γ and δ

CASE 1: α

For B = 0, we have H = −J
∑

〈i,j〉 SiSj where
∑

〈i,j〉 is the sum over nearest neighbours. The mean
energy of the system is given by

E = 〈H〉 = −J
∑
〈i,j〉

〈SiSj〉.

In lowest-order mean field approximation, the spins are independent and so we may factorize as:

〈SiSj〉 = 〈Si〉〈Sj〉.
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Hence

E = −J
∑
〈i,j〉

〈Si〉〈Sj〉 = −Jz
N

2
M2,

where M = 〈S〉 ≡ order parameter. From the thermodynamic definition of the heat capacity, CB at
constant magnetic field, we have

CB =
∂E

∂T

)

B

= −2Jz
N

2
M

dM

dT
= −JzNM

dM

dT
.

Now, for:

T > Tc : M = 0 therefore CB = 0;

T ≤ Tc : M = (−3θc)
1/2 .

Thus
∂M

∂T
=

1

2
(−3θc)

−1/2 ×−dθc
dT

=
−3

2
M−1dθc

dt
=

−3

2
M−1T−1

c ,

and so
∂E

∂T

)

B

=
3

2
JzNMM−1T−1

c =
3

2

JzN

c
, from equation (5.17).

=
3

2
Nk as Jz = kTc.

Hence CB is discontinuous at T = Tc and so α = 0.

CASE 2: β

The mean magnetization M = 〈S〉0, and from mean field theory:

〈S〉0 = tanh(βB + 2zJβ〈S〉0).

Hence we can write:
M = tanh(βzJM + b) where b ≡ βB.

Now mean field theory gives zβcJ = 1 or zJ = 1/βc, thus it follows that

M = tanh

[
βM

βc

+ b

]
= tanh

[
M

Tc

T
+ b

]
= tanh

[
M

(1 + θc)
+ b

]
.

Set B = 0 and expand for T ∼ Tc, in which case θc is small:

M =
M

1 + θc
− 1

3

M3

(1 + θc)3
,

and re-arranging:

M

(
1− 1

1 + θc

)
= −1

3

M3

(1 + θc)3
,

hence, either:
M = 0

or

M2 = −3θc
(1 + θc)

3

(1 + θc)
= −3θc(1 + θc)

2.

Taking the nontrivial case,
M ∼ | − 3θc|1/2,

and by comparison with the equation which defines the critical exponent:

β = 1/2.
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E = −J
∑
〈i,j〉

〈Si〉〈Sj〉 = −Jz
N

2
M2,

where M = 〈S〉 ≡ order parameter. From the thermodynamic definition of the heat capacity, CB at
constant magnetic field, we have

CB =
∂E

∂T

)

B

= −2Jz
N

2
M

dM

dT
= −JzNM

dM

dT
.

Now, for:

T > Tc : M = 0 therefore CB = 0;

T ≤ Tc : M = (−3θc)
1/2 .

Thus
∂M

∂T
=

1

2
(−3θc)

−1/2 ×−dθc
dT

=
−3

2
M−1dθc

dt
=

−3

2
M−1T−1

c ,

and so
∂E

∂T

)

B

=
3

2
JzNMM−1T−1

c =
3

2

JzN

c
, from equation (5.17).

=
3

2
Nk as Jz = kTc.

Hence CB is discontinuous at T = Tc and so α = 0.

CASE 2: β

The mean magnetization M = 〈S〉0, and from mean field theory:

〈S〉0 = tanh(βB + 2zJβ〈S〉0).

Hence we can write:
M = tanh(βzJM + b) where b ≡ βB.

Now mean field theory gives zβcJ = 1 or zJ = 1/βc, thus it follows that

M = tanh

[
βM

βc

+ b

]
= tanh

[
M

Tc

T
+ b

]
= tanh

[
M

(1 + θc)
+ b

]
.

Set B = 0 and expand for T ∼ Tc, in which case θc is small:

M =
M

1 + θc
− 1

3

M3

(1 + θc)3
,

and re-arranging:

M

(
1− 1

1 + θc

)
= −1

3

M3

(1 + θc)3
,

hence, either:
M = 0

or

M2 = −3θc
(1 + θc)

3

(1 + θc)
= −3θc(1 + θc)

2.

Taking the nontrivial case,
M ∼ | − 3θc|1/2,

and by comparison with the equation which defines the critical exponent:

β = 1/2.
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CASE 3: γ and δ

From the definition of the isothermal susceptibility χ
T , we have:

χ
T =

∂M

∂B
= β

∂M

∂b
,

and also

M = tanh

(
M

1 + θc
+ b

)
� M

1 + θc
+ b for T > Tc.

Now, with some re-arrangement,

M − M

1 + θc
= b,

to this order of approximation and, re-arranging further, we have:

M =

(
1 + θc
θc

)
b.

Hence

χ
T ∼ ∂M

∂b
∼ 1

θc
as θc → 0

and so
χ
T ∼ θ−1

c , γ = −1,

which follows from the definition of γ. Next, consider the effect of an externally imposed field at T =
Tc, where θc = 0, and so 1 + θc = 1. We use the identity:

M = tanh(M + b) = (tanhM + tanh b)(1 + tanhM tanh b),

which leads to

M �
(
M − M3

3
+ b− b3

3

)
(1 + tanhM tanh b).

Cancel the factor of M on both sides and rearrange, to obtain:

b ∼ M3

3
+

b3

3
−
(
M − M3

3
+ b− b3

3

)(
Mb− Mb3

3
− Mb3

3
+ . . .

)
.

Therefore b ∼ M3/b for small b,M and by comparison with the defining relation, δ = 3.
If we set b ∼ M3 on the right hand side, we can verify all terms of order higher than O (M3) are

neglected.
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Chapter 6

Classical treatment of the Hamiltonian
N-body assembly

In this section we discuss the behaviour of the assembly as a function of time. To do this, we formulate
the microscopic description of an assembly in a way that is completely rigorous and fundamental yet
which leads to some surprising results which do not appear to accord with everyday experience. Although
we should note that our theory here is fundamental only insofar as that property is compatible with a
classical description, we should emphasise two points. First, we shall as usual maintain contact with the
quantum description, which should ensure that we do not do anything which is actually wrong. Second,
the paradoxes which will arise do not depend on a quantum description for their resolution.

We may foreshadow the later paradoxical behaviour of the theoretical predictions by first discussing a
simple, qualitative version of the reversibility paradox. Let us consider a box with an internal partition
which divides it into two equal volumes, one of which contains a gas at (say) STP, and the other which
is empty. The situation is illustrated in Fig. 6.1. Let us now imagine that the partition is broken in such
a way that the gas can escape to the empty half of the box. Obviously this is just what will happen and
the process will stop when the amount of gas in each half of the box is the same.

Yet when we try to describe this process at the macroscopic level, we run into a difficulty. The motion
of each particle is governed by Newton’s laws and these are reversible in time. If we know the state of
any one particle at any time t0 (say), then we know its past history t < t0 and its future behaviour t > t0
for all time. This is the deterministic picture. We can equally well run the clock backwards and the
description of the particle motion will still be valid. Thus on a microscopic level, there would appear to be
no reason to predict that a system would evolve irreversibly from a non-equilibrium state to an equilibrium
one. Indeed, as we shall see, at this level of description it may not be possible to even say what we mean
by an equilibrium state.

In the classical description, by ‘state of a particle’ we mean its instantaneous position and velocity.
The quantum description is, in this context, more difficult to envisage, because we have to think of the
individual particles as undergoing transitions from one quantum state to another. These quantum states
are the relevant solutions of the Schroedinger equation and this equation (which is equivalent to a statement
of conservation of energy) is, like Newton’s laws, reversible in time. Thus, irrespective of whether we adopt
a classical or a quantum description, at the microscopic level it is not immediately obvious why a system
will evolve in one direction rather than another. This is the fundamental problem of statistical physics:
what determines the direction of time’s arrow? We shall consider this aspect further as we develop the
theory in this chapter.

6.1 Hamilton’s equations and phase space

The treatment of this chapter will be based on Hamilton’s equations. It is assumed that the reader has
met both the Lagrangian and Hamiltonian formulations of classical mechanics and so only the briefest of
introductions will be given here.
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A B

Figure 6.1: Illustration of the reversibility paradox.

From our present point of view, we note that we can recast Newton’s laws of motion in the form of
Hamilton’s equations. If we specify the state of the ith particle in the assembly by its generalised position
coordinate qi and its conjugate momentum pi, then we have six scalar coordinates to describe each particle
state and Hamilton’s equations of motion take the form:

q̇i =
∂H

∂pi

, (6.1)

ṗi = −∂H

∂qi

. (6.2)

Formally, one obtains the Hamiltonian from the Lagrangian; but, provided any constraints on the
system are independent of time and that any potentials do not depend on velocities, the Hamiltonian is
just the total energy. That is,

H = T + U,

where T is the kinetic energy of the system and U is its potential energy. This will be the case for the
simple system consisting of N point masses in a box with rigid impermeable walls, which we consider here.

In this formalism, the evolution of the particle ‘state’ with time can be represented by a trajectory in
phase space. This terminology was first coined in statistical mechanics by Gibbs, but it is perhaps most
easily understood in the context of oscillatory motion where the term ‘phase’ is normally first encountered.

As an example, let us consider a simple pendulum, which is a realization of simple harmonic motion
in one dimension. In Fig. 10, we show the phase space trajectory corresponding to the simple pendulum.
We note that in this representation the oscillatory motion of the pendulum in real space is translated into
an elliptical orbit in phase space. The ‘state’ of the pendulum at any time corresponds to the value of the
phase as plotted on the diagram.

In the case of the ideal simple pendulum, the motion is undamped and the phase space trajectory (or
locus of points) corresponds to constant total energy. In general, for higher dimensional problems, we
talk about a constant energy surface in phase space. However, if we consider the motion of a damped
pendulum, the amplitude decays with time and ultimately the pendulum comes to rest with its bob at the
point of equilibrium. In this case the phase space trajectory is no longer a closed orbit but instead spirals
into the origin where the bob is ultimately at rest. This sort of behaviour is illustrated in Fig. 11.
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Chapter 6

Classical treatment of the Hamiltonian
N-body assembly

In this section we discuss the behaviour of the assembly as a function of time. To do this, we formulate
the microscopic description of an assembly in a way that is completely rigorous and fundamental yet
which leads to some surprising results which do not appear to accord with everyday experience. Although
we should note that our theory here is fundamental only insofar as that property is compatible with a
classical description, we should emphasise two points. First, we shall as usual maintain contact with the
quantum description, which should ensure that we do not do anything which is actually wrong. Second,
the paradoxes which will arise do not depend on a quantum description for their resolution.

We may foreshadow the later paradoxical behaviour of the theoretical predictions by first discussing a
simple, qualitative version of the reversibility paradox. Let us consider a box with an internal partition
which divides it into two equal volumes, one of which contains a gas at (say) STP, and the other which
is empty. The situation is illustrated in Fig. 9. Let us now imagine that the partition is broken in such
a way that the gas can escape to the empty half of the box. Obviously this is just what will happen and
the process will stop when the amount of gas in each half of the box is the same.

Yet when we try to describe this process at the macroscopic level, we run into a difficulty. The motion
of each particle is governed by Newton’s laws and these are reversible in time. If we know the state of
any one particle at any time t0 (say), then we know its past history t < t0 and its future behaviour t > t0
for all time. This is the deterministic picture. We can equally well run the clock backwards and the
description of the particle motion will still be valid. Thus on a microscopic level, there would appear to be
no reason to predict that a system would evolve irreversibly from a non-equilibrium state to an equilibrium
one. Indeed, as we shall see, at this level of description it may not be possible to even say what we mean
by an equilibrium state.

In the classical description, by ‘state of a particle’ we mean its instantaneous position and velocity.
The quantum description is, in this context, more difficult to envisage, because we have to think of the
individual particles as undergoing transitions from one quantum state to another. These quantum states
are the relevant solutions of the Schroedinger equation and this equation (which is equivalent to a statement
of conservation of energy) is, like Newton’s laws, reversible in time. Thus, irrespective of whether we adopt
a classical or a quantum description, at the microscopic level it is not immediately obvious why a system
will evolve in one direction rather than another. This is the fundamental problem of statistical physics:
what determines the direction of time’s arrow? We shall consider this aspect further as we develop the
theory in this chapter.

6.1 Hamilton’s equations and phase space

The treatment of this chapter will be based on Hamilton’s equations. It is assumed that the reader has
met both the Lagrangian and Hamiltonian formulations of classical mechanics and so only the briefest of
introductions will be given here.
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state vector

Figure 6.2: Phase space representation of the motion of a simple pendulum.

p

q

constant energy locus

Figure 6.3: Phase space trajectory of the motion of a damped pendulum.
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A B

Figure 6.1: Illustration of the reversibility paradox.

From our present point of view, we note that we can recast Newton’s laws of motion in the form of
Hamilton’s equations. If we specify the state of the ith particle in the assembly by its generalised position
coordinate qi and its conjugate momentum pi, then we have six scalar coordinates to describe each particle
state and Hamilton’s equations of motion take the form:

q̇i =
∂H

∂pi

, (6.1)

ṗi = −∂H

∂qi

. (6.2)

Formally, one obtains the Hamiltonian from the Lagrangian; but, provided any constraints on the
system are independent of time and that any potentials do not depend on velocities, the Hamiltonian is
just the total energy. That is,

H = T + U,

where T is the kinetic energy of the system and U is its potential energy. This will be the case for the
simple system consisting of N point masses in a box with rigid impermeable walls, which we consider here.

In this formalism, the evolution of the particle ‘state’ with time can be represented by a trajectory in
phase space. This terminology was first coined in statistical mechanics by Gibbs, but it is perhaps most
easily understood in the context of oscillatory motion where the term ‘phase’ is normally first encountered.

As an example, let us consider a simple pendulum, which is a realization of simple harmonic motion
in one dimension. In Fig. 10, we show the phase space trajectory corresponding to the simple pendulum.
We note that in this representation the oscillatory motion of the pendulum in real space is translated into
an elliptical orbit in phase space. The ‘state’ of the pendulum at any time corresponds to the value of the
phase as plotted on the diagram.

In the case of the ideal simple pendulum, the motion is undamped and the phase space trajectory (or
locus of points) corresponds to constant total energy. In general, for higher dimensional problems, we
talk about a constant energy surface in phase space. However, if we consider the motion of a damped
pendulum, the amplitude decays with time and ultimately the pendulum comes to rest with its bob at the
point of equilibrium. In this case the phase space trajectory is no longer a closed orbit but instead spirals
into the origin where the bob is ultimately at rest. This sort of behaviour is illustrated in Fig. 11.
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Figure 6.2: Phase space representation of the motion of a simple pendulum.
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constant energy locus

Figure 6.3: Phase space trajectory of the motion of a damped pendulum.
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6.2 Hamilton’s equations and 6N-dimensional phase space

The use of Hamilton’s formalism is a natural one for problems where the energy is conserved. However, we
have another motivation. If we set up our classical treatment using Hamilton’s equations then it facilitates
the transfer to a quantum mechanical formulation.

In order to see this, we extend the present formalism by introducing the Poisson bracket (PB) notation.
If F and G are arbitrary functions of the set of coordinates {q,p}, then their PB is defined by:

[F,G] =
∑
i

(
∂F

∂qi

∂G

∂pi

− ∂F

∂pi

∂G

∂qi

)
. (6.3)

The usefulness of this lies in way in which it allows us to make the transition to the quantum mechanical
formalism:

[F,G]PB → [F,G]commutator,

along with multiplicative factors involving Planck’s constant and i =
√
−1.

Let us now choose F = qi and G = H; and then F = pi and G = H. It immediately follows that
Hamilton’s equations can be written as

[qi, H] =
∂H

∂pi

= q̇i, (6.4)

[pi, H] = −∂H

∂qi

= ṗi. (6.5)

In general, it can be shown that the time derivative of any arbitrary function u ≡ u(q,p, t) is given by:

du

dt
=

∂u

∂t
+ [u,H], (6.6)

and this is a result which will be useful later on.
Let us now consider a closed classical assembly with 3N degrees of freedom. It is quite simple to

extend this to larger numbers of degrees of freedom such as might arise with molecules which can vibrate
or rotate; but we shall not pursue such complications here. It follows that the state of an assembly is
specified by 6N real, scalar variables q, p, such that (in a contracted notation):

q ≡ q1,q2, ...,qN (6.7)

and
p ≡ p1,p2, ...,pN . (6.8)

It is also helpful to introduce an even more contracted notation in the form of the state vector X, such
that:

X ≡ {q,p}, (6.9)

and X specifies the complete state of the assembly at time t. If we define the Hamiltonian for the assembly
as H(X, t), then the variation of its state with time is governed by Hamilton’s equations in the form:

q̇ ≡ ∂q

∂t
=

∂H(X, t)

∂p
, (6.10)

ṗ ≡ ∂p

∂t
= −∂H(X, t)

∂q
. (6.11)

Now we introduce a 6N dimensional phase space, which is often referred to as Γ space, spanned by
vectors {p,q}. Then the state vector X(q,p) represents the state of the assembly as a point in Γ-space.
As the assembly evolves with time, X traces out a trajectory in Γ space. At any instant, the ensemble is
represented by a cloud of points in Γ space.
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6.2 Hamilton’s equations and 6N-dimensional phase space

The use of Hamilton’s formalism is a natural one for problems where the energy is conserved. However, we
have another motivation. If we set up our classical treatment using Hamilton’s equations then it facilitates
the transfer to a quantum mechanical formulation.

In order to see this, we extend the present formalism by introducing the Poisson bracket (PB) notation.
If F and G are arbitrary functions of the set of coordinates {q,p}, then their PB is defined by:

[F,G] =
∑
i

(
∂F

∂qi

∂G

∂pi

− ∂F

∂pi

∂G

∂qi

)
. (6.3)

The usefulness of this lies in way in which it allows us to make the transition to the quantum mechanical
formalism:

[F,G]PB → [F,G]commutator,

along with multiplicative factors involving Planck’s constant and i =
√
−1.

Let us now choose F = qi and G = H; and then F = pi and G = H. It immediately follows that
Hamilton’s equations can be written as

[qi, H] =
∂H

∂pi

= q̇i, (6.4)

[pi, H] = −∂H

∂qi

= ṗi. (6.5)

In general, it can be shown that the time derivative of any arbitrary function u ≡ u(q,p, t) is given by:

du

dt
=

∂u

∂t
+ [u,H], (6.6)

and this is a result which will be useful later on.
Let us now consider a closed classical assembly with 3N degrees of freedom. It is quite simple to

extend this to larger numbers of degrees of freedom such as might arise with molecules which can vibrate
or rotate; but we shall not pursue such complications here. It follows that the state of an assembly is
specified by 6N real, scalar variables q, p, such that (in a contracted notation):

q ≡ q1,q2, ...,qN (6.7)

and
p ≡ p1,p2, ...,pN . (6.8)

It is also helpful to introduce an even more contracted notation in the form of the state vector X, such
that:

X ≡ {q,p}, (6.9)

and X specifies the complete state of the assembly at time t. If we define the Hamiltonian for the assembly
as H(X, t), then the variation of its state with time is governed by Hamilton’s equations in the form:

q̇ ≡ ∂q

∂t
=

∂H(X, t)

∂p
, (6.10)

ṗ ≡ ∂p

∂t
= −∂H(X, t)

∂q
. (6.11)

Now we introduce a 6N dimensional phase space, which is often referred to as Γ space, spanned by
vectors {p,q}. Then the state vector X(q,p) represents the state of the assembly as a point in Γ-space.
As the assembly evolves with time, X traces out a trajectory in Γ space. At any instant, the ensemble is
represented by a cloud of points in Γ space.
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As time goes on, the ensemble is represented by a swarm of trajectories. Obviously, any region where

the trajectories lie most densely, indicates the region of phase space where one is most likely to find an
assembly state. This intuitive idea about probability can be expressed in terms of a density distribution
ρ(X, t), which is defined by

dN = ρ(X, t)dX, (6.12)

where

dN = the number of assemblies with state vector inside the interval X,X+ dX;

and

dX ≡ 6N -dimensional volume element.

It is conventional to assume that the number of assemblies in the ensemble is so large that ρ and dN
can be regarded as continuous functions of X and t. In fact this number is somewhat arbitrary, but it is
often convenient to choose the total number of assemblies to be N , the same as the number of particles in
an assembly.

If we integrate the density distribution ρ(X, t) over the volume of Γ-space, then it follows that we
obtain

N =

∫

Γ

ρ(X, t)dX, (6.13)

≡ the total number of assemblies in the ensemble;

≡ the total number of representative points in Γ-space.

This allows us to define the normalized density distribution ρN as follows:

ρN(X, t) =
ρ(X, t)

N
≡ ρ(X, t)∫

Γ
ρ(X, t)dX

, (6.14)

where the normalized density distribution can be interpreted in words, as follows:

ρN(X, t) ≡ the probability that the state point of an assembly, chosen at random from the
ensemble, will lie in a volume element between X and X+ dX at time t.

It follows from equations (6.13) and (6.14) that ρN is correctly normalized, thus:
∫

Γ

ρ(X, t)dX = 1. (6.15)

6.3 Liouville’s theorem for N particles in a box

Liouville’s theorem states that the density of points in the neighbourhood of some given point in phase
space remains constant in time. Consider an elementary volume of Γ space dV , containing dN points.
From equation (6.12) the density of points is:

ρ =
dN

dV
, (6.16)

and Liouville’s theorem may be restated as

dρ

dt
= 0, (6.17)

which is often referred to as Liouville’s equation.
We can prove this theorem in two parts by showing that dN and dV are separately independent of

time.
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As time goes on, the ensemble is represented by a swarm of trajectories. Obviously, any region where
the trajectories lie most densely, indicates the region of phase space where one is most likely to find an
assembly state. This intuitive idea about probability can be expressed in terms of a density distribution
ρ(X, t), which is defined by

dN = ρ(X, t)dX, (6.12)

where

dN = the number of assemblies with state vector inside the interval X,X+ dX;

and

dX ≡ 6N -dimensional volume element.

It is conventional to assume that the number of assemblies in the ensemble is so large that ρ and dN
can be regarded as continuous functions of X and t. In fact this number is somewhat arbitrary, but it is
often convenient to choose the total number of assemblies to be N , the same as the number of particles in
an assembly.

If we integrate the density distribution ρ(X, t) over the volume of Γ-space, then it follows that we
obtain

N =

∫

Γ

ρ(X, t)dX, (6.13)

≡ the total number of assemblies in the ensemble;

≡ the total number of representative points in Γ-space.

This allows us to define the normalized density distribution ρN as follows:

ρN(X, t) =
ρ(X, t)

N
≡ ρ(X, t)∫

Γ
ρ(X, t)dX

, (6.14)

where the normalized density distribution can be interpreted in words, as follows:

ρN(X, t) ≡ the probability that the state point of an assembly, chosen at random from the
ensemble, will lie in a volume element between X and X+ dX at time t.

It follows from equations (6.13) and (6.14) that ρN is correctly normalized, thus:
∫

Γ

ρ(X, t)dX = 1. (6.15)

6.3 Liouville’s theorem for N particles in a box

Liouville’s theorem states that the density of points in the neighbourhood of some given point in phase
space remains constant in time. Consider an elementary volume of Γ space dV , containing dN points.
From equation (6.12) the density of points is:

ρ =
dN

dV
, (6.16)

and Liouville’s theorem may be restated as

dρ

dt
= 0, (6.17)

which is often referred to as Liouville’s equation.
We can prove this theorem in two parts by showing that dN and dV are separately independent of

time.

59A. Show that dN=constant.

Consider the motion of the elementary volume dV in phase space from t0 to t. Each point within the
volume corresponds to a dynamical system, evolving with time according to Hamilton’s equations. Thus,
as time goes on, the dynamical system representative points contained in dV move about in phase space
and the shape of dV must change with time.

However the number of points dN cannot change with time. If any point were to cross the boundary
then it would occupy at some time the same point in Γ space as one of the dynamical systems defining
the boundary of dV . Since the subsequent motion of a dynamical system is uniquely determined by its
location in Γ space at a given time, the two systems would thereafter travel together.

As a result, we come to the following conclusions:

• No system point can leave dV ;

• No system point can join dV ;

• No two distinct trajectories in Γ space can intersect.

B. Show that dV=constant.

Using our state vector notation, we may write

dV = {dq1dq2...dqNdp1dp2...dpN} ≡ dX.

Now consider the change in the volume element with time t0 → t, thus:

dXt = JN(t, t0)dXt0 , (6.18)

where JN(t, t0) is the Jacobian of the transformation. That is, the determinant of the 6N × 6N matrix,
written symbolically as:

JN(t, t0) = det

∣∣∣∣∣
∂pt

∂pt0

∂pt

∂qt0
∂qt

∂pt0

∂qt

∂qt0

∣∣∣∣∣ (6.19)

It is a standard mathematical result that the product of the determinants of two matrices is equal to the
determinant of the product. Hence, the Jacobean has the transitive property

JN(t, t0) = JN(t, t1)JN(t1, t0), (6.20)

where t ≥ t1 ≥ t0. We take the time of evolution to be small and write t− t0 = ∆t. Then the coordinates
of the state point at t can be related to the coordinates of the state point at t0 by:

qt = qt0 + q̇t0∆t+O(∆t2); (6.21)

pt = pt0 + ṗt0∆t+O(∆t2). (6.22)

Next, substitute into (6.16) and multiply out:

JN(t, t0) = 1 +

(
∂q̇t0

∂qt0

+
∂ṗt0

∂pt0

)
∆t+O(∆t2). (6.23)

However, from Hamilton’s equations (6.4) and (6.5) we have

∂q̇t0/∂qt0 + ∂ṗt0∂pt0 = 0, (6.24)

and so
JN(t, t0) = 1 +O(∆t2). (6.25)
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A. Show that dN=constant.

Consider the motion of the elementary volume dV in phase space from t0 to t. Each point within the
volume corresponds to a dynamical system, evolving with time according to Hamilton’s equations. Thus,
as time goes on, the dynamical system representative points contained in dV move about in phase space
and the shape of dV must change with time.

However the number of points dN cannot change with time. If any point were to cross the boundary
then it would occupy at some time the same point in Γ space as one of the dynamical systems defining
the boundary of dV . Since the subsequent motion of a dynamical system is uniquely determined by its
location in Γ space at a given time, the two systems would thereafter travel together.

As a result, we come to the following conclusions:

• No system point can leave dV ;

• No system point can join dV ;

• No two distinct trajectories in Γ space can intersect.

B. Show that dV=constant.

Using our state vector notation, we may write

dV = {dq1dq2...dqNdp1dp2...dpN} ≡ dX.

Now consider the change in the volume element with time t0 → t, thus:

dXt = JN(t, t0)dXt0 , (6.18)

where JN(t, t0) is the Jacobian of the transformation. That is, the determinant of the 6N × 6N matrix,
written symbolically as:

JN(t, t0) = det

∣∣∣∣∣
∂pt

∂pt0

∂pt

∂qt0
∂qt

∂pt0

∂qt

∂qt0

∣∣∣∣∣ (6.19)

It is a standard mathematical result that the product of the determinants of two matrices is equal to the
determinant of the product. Hence, the Jacobean has the transitive property

JN(t, t0) = JN(t, t1)JN(t1, t0), (6.20)

where t ≥ t1 ≥ t0. We take the time of evolution to be small and write t− t0 = ∆t. Then the coordinates
of the state point at t can be related to the coordinates of the state point at t0 by:

qt = qt0 + q̇t0∆t+O(∆t2); (6.21)

pt = pt0 + ṗt0∆t+O(∆t2). (6.22)

Next, substitute into (6.16) and multiply out:

JN(t, t0) = 1 +

(
∂q̇t0

∂qt0

+
∂ṗt0

∂pt0

)
∆t+O(∆t2). (6.23)

However, from Hamilton’s equations (6.4) and (6.5) we have

∂q̇t0/∂qt0 + ∂ṗt0∂pt0 = 0, (6.24)

and so
JN(t, t0) = 1 +O(∆t2). (6.25)

60Now, from (6.20) we have:

JN(t, 0) = JN(t, t0)JN(t0, 0) = [1 +O(∆t2)]JN(t0, 0). (6.26)

So, if we divide across by ∆t and take the limit lim∆t → 0 we obtain

dJN
dt

= lim
∆t→0

JN(t0 +∆t, 0)− JN(t0, 0)

∆t
= 0, (6.27)

and hence
JN(t, 0) = JN(0, 0) = 1. (6.28)

So, in all, it follows from equation (6.18) that,

dXt = dXt0 (6.29)

or equivalently, dV = constant and equation (6.17) is proved.

6.4 Probability density as a fluid.

If we regard the points in phase space as making up a fluid, in some continuum limit, then we may identify
the fluid velocity as Ẋ = {q̇, ṗ}. That is, it is the velocity of a state point. We can rewrite equation (6.24)
as

div Ẋ = 0 (6.30)

so the probability density is in effect an incompressible fluid. It should be borne in mind that here ‘div’ is
an operator in Γ space:

∇ ≡
{

∂

∂q1

,
∂

∂q2

. . .
∂

∂qN

;
∂

∂p1

,
∂

∂p2

. . .
∂

∂pN

}
.

We shall work in terms of the normalised probability density ρN , which satisifies

∫

Γ

ρN(X, t)dX = 1.

From equation (6.14) which defines this distribution, it follows that the probability of finding the state
point in a finite region R of Γ space is given by

P (R) =

∫

R

ρN(X, t)dX. (6.31)

It can be shown that, by considering the rate of change of probability in a fixed volume V0 with surface
area S0 in Γ space, and using equation (6.30), that

∂ρN
∂t

+ Ẋ.∇ρN = 0. (6.32)

In the language of fluid mechanics, Ẋ.∇ is a convective derivative in Γ space. Hence we may combine
this with the partial derivative with respect to time to make up the usual total time derivative and rewrite
the above equation as

dρN
dt

= 0, (6.33)

in agreement with (6.17) which is Liouville’s equation.
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Now, from (6.20) we have:

JN(t, 0) = JN(t, t0)JN(t0, 0) = [1 +O(∆t2)]JN(t0, 0). (6.26)

So, if we divide across by ∆t and take the limit lim∆t → 0 we obtain

dJN
dt

= lim
∆t→0

JN(t0 +∆t, 0)− JN(t0, 0)

∆t
= 0, (6.27)

and hence
JN(t, 0) = JN(0, 0) = 1. (6.28)

So, in all, it follows from equation (6.18) that,

dXt = dXt0 (6.29)

or equivalently, dV = constant and equation (6.17) is proved.

6.4 Probability density as a fluid.

If we regard the points in phase space as making up a fluid, in some continuum limit, then we may identify
the fluid velocity as Ẋ = {q̇, ṗ}. That is, it is the velocity of a state point. We can rewrite equation (6.24)
as

div Ẋ = 0 (6.30)

so the probability density is in effect an incompressible fluid. It should be borne in mind that here ‘div’ is
an operator in Γ space:

∇ ≡
{

∂

∂q1

,
∂

∂q2

. . .
∂

∂qN

;
∂

∂p1

,
∂

∂p2

. . .
∂

∂pN

}
.

We shall work in terms of the normalised probability density ρN , which satisifies

∫

Γ

ρN(X, t)dX = 1.

From equation (6.14) which defines this distribution, it follows that the probability of finding the state
point in a finite region R of Γ space is given by

P (R) =

∫

R

ρN(X, t)dX. (6.31)

It can be shown that, by considering the rate of change of probability in a fixed volume V0 with surface
area S0 in Γ space, and using equation (6.30), that

∂ρN
∂t

+ Ẋ.∇ρN = 0. (6.32)

In the language of fluid mechanics, Ẋ.∇ is a convective derivative in Γ space. Hence we may combine
this with the partial derivative with respect to time to make up the usual total time derivative and rewrite
the above equation as

dρN
dt

= 0, (6.33)

in agreement with (6.17) which is Liouville’s equation.
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6.5 Liouville’s equation: operator formalism.

We can re-express these results in terms of the Poisson Bracket formalism, as given in equations (6.3)-(6.5).
If we invoke equation (6.6) to write (6.33) as:

dρN
dt

=
∂ρN
∂t

+ [ρN , H] = 0, (6.34)

then we can put this in terms of the Liouvillian LN , which is defined by:

LNρN = −i[ρN , H], (6.35)

and (6.34) can be written as
i∂ρN
∂t

= LNρN , (6.36)

with general solution:
ρN(X, t) = eiLN tρN(X, 0). (6.37)

A probability density which is independent of time must satisfy the condition

LNρN(X, 0) = 0, (6.38)

and in this case, ρN(X, 0) is called a stationary state of the Liouville equation.
Two general points should be noted:

• The formulation in terms of the Liouvillian is very general and can be used for ensembles where the
Hamiltonian does not exist.

• LN is Hermitian and has real eigenvalues. Thus the solution given by (6.37) will oscillate in time,
rather than decay to a unique equilibrium state.

We may expand upon the latter point as follows. If we reverse the time in (6.37), we do not change the
equation. LN changes sign as t → −t and so the product LN t is time-reversal symmetric. It is an everyday
observation that processes are often irreversible and decay with time to an equilibrium or stationary
state. Yet Liouville’s equation - although rigorous - cannot apparently predict irreversible processes. The
resolution of this apparent contradiction poses one of the fundamental problems of statistical mechanics.

However, from ensemble theory, we actually know a great deal about the stationary states of Liouville’s
equation. For these cases, H does not depend explicitly on time and so is a constant of the motion:

HN(X) = E, (6.39)

where E is the total energy of the assembly.

6.6 The generalised H-theorem (due to Gibbs).

We begin by introducing a ’coarse-grained’ probability density ρ(X, t), which we shall discuss presently,
and use this to define the quantity

H =

∫
ρ(X, t) ln ρ(X, t)dX. (6.40)

Then, the generalised H-theorem due to Gibbs is equivalent to the statement:

dH

dt
≤ 0, (6.41)

where the equality corresponds to equilibrium.
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6.5 Liouville’s equation: operator formalism.

We can re-express these results in terms of the Poisson Bracket formalism, as given in equations (6.3)-(6.5).
If we invoke equation (6.6) to write (6.33) as:

dρN
dt

=
∂ρN
∂t

+ [ρN , H] = 0, (6.34)

then we can put this in terms of the Liouvillian LN , which is defined by:

LNρN = −i[ρN , H], (6.35)

and (6.34) can be written as
i∂ρN
∂t

= LNρN , (6.36)

with general solution:
ρN(X, t) = eiLN tρN(X, 0). (6.37)

A probability density which is independent of time must satisfy the condition

LNρN(X, 0) = 0, (6.38)

and in this case, ρN(X, 0) is called a stationary state of the Liouville equation.
Two general points should be noted:

• The formulation in terms of the Liouvillian is very general and can be used for ensembles where the
Hamiltonian does not exist.

• LN is Hermitian and has real eigenvalues. Thus the solution given by (6.37) will oscillate in time,
rather than decay to a unique equilibrium state.

We may expand upon the latter point as follows. If we reverse the time in (6.37), we do not change the
equation. LN changes sign as t → −t and so the product LN t is time-reversal symmetric. It is an everyday
observation that processes are often irreversible and decay with time to an equilibrium or stationary
state. Yet Liouville’s equation - although rigorous - cannot apparently predict irreversible processes. The
resolution of this apparent contradiction poses one of the fundamental problems of statistical mechanics.

However, from ensemble theory, we actually know a great deal about the stationary states of Liouville’s
equation. For these cases, H does not depend explicitly on time and so is a constant of the motion:

HN(X) = E, (6.39)

where E is the total energy of the assembly.

6.6 The generalised H-theorem (due to Gibbs).

We begin by introducing a ’coarse-grained’ probability density ρ(X, t), which we shall discuss presently,
and use this to define the quantity

H =

∫
ρ(X, t) ln ρ(X, t)dX. (6.40)

Then, the generalised H-theorem due to Gibbs is equivalent to the statement:

dH

dt
≤ 0, (6.41)

where the equality corresponds to equilibrium.
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6.5 Liouville’s equation: operator formalism.

We can re-express these results in terms of the Poisson Bracket formalism, as given in equations (6.3)-(6.5).
If we invoke equation (6.6) to write (6.33) as:

dρN
dt

=
∂ρN
∂t

+ [ρN , H] = 0, (6.34)

then we can put this in terms of the Liouvillian LN , which is defined by:

LNρN = −i[ρN , H], (6.35)

and (6.34) can be written as
i∂ρN
∂t

= LNρN , (6.36)

with general solution:
ρN(X, t) = eiLN tρN(X, 0). (6.37)

A probability density which is independent of time must satisfy the condition

LNρN(X, 0) = 0, (6.38)

and in this case, ρN(X, 0) is called a stationary state of the Liouville equation.
Two general points should be noted:

• The formulation in terms of the Liouvillian is very general and can be used for ensembles where the
Hamiltonian does not exist.

• LN is Hermitian and has real eigenvalues. Thus the solution given by (6.37) will oscillate in time,
rather than decay to a unique equilibrium state.

We may expand upon the latter point as follows. If we reverse the time in (6.37), we do not change the
equation. LN changes sign as t → −t and so the product LN t is time-reversal symmetric. It is an everyday
observation that processes are often irreversible and decay with time to an equilibrium or stationary
state. Yet Liouville’s equation - although rigorous - cannot apparently predict irreversible processes. The
resolution of this apparent contradiction poses one of the fundamental problems of statistical mechanics.

However, from ensemble theory, we actually know a great deal about the stationary states of Liouville’s
equation. For these cases, H does not depend explicitly on time and so is a constant of the motion:

HN(X) = E, (6.39)

where E is the total energy of the assembly.

6.6 The generalised H-theorem (due to Gibbs).

We begin by introducing a ’coarse-grained’ probability density ρ(X, t), which we shall discuss presently,
and use this to define the quantity

H =

∫
ρ(X, t) ln ρ(X, t)dX. (6.40)

Then, the generalised H-theorem due to Gibbs is equivalent to the statement:

dH

dt
≤ 0, (6.41)

where the equality corresponds to equilibrium.
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ρ

δ δ
X

X X

Figure 6.4: Illustration of a coarse-graining operation. The histogram is the coarse-grained version of the distri-
bution ρ.

The Liouville description

The probability of finding a member of the ensemble in the range (X,X+ dX) is

dN

N
= ρN(X, t)dX, (6.42)

such that ∫

Γ

ρN(X, t)dX = 1. (6.43)

The coarse-grained description

The probability of finding a member of the ensemble in the small but finite volume δX is

δN

N
= ρ(X, t)δX, (6.44)

such that ∫

Γ

ρ(X, t)dX = 1. (6.45)

That is, ρ is just ρN averaged over δX. This concept is illustrated for a one-dimensional distribution in
Fig. 12. Or, equivalently,

ρ(X, t) =

∫

δX

ρN(X, t)dX. (6.46)

We now define a new quantity H, for any ensemble, thus:

H =

∫

Γ

ρ(X, t) ln ρ(X, t)dX. (6.47)

At this stage, we should note the following points:

1. H will depend on the number and form of the regions δX;

2.
∫
ρ ln ρdX is not in general equal to

∫
ρN ln ρNdX;
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ρ

δ δ
X

X X

Figure 6.4: Illustration of a coarse-graining operation. The histogram is the coarse-grained version of the distri-
bution ρ.

The Liouville description

The probability of finding a member of the ensemble in the range (X,X+ dX) is

dN

N
= ρN(X, t)dX, (6.42)

such that ∫

Γ

ρN(X, t)dX = 1. (6.43)

The coarse-grained description

The probability of finding a member of the ensemble in the small but finite volume δX is

δN

N
= ρ(X, t)δX, (6.44)

such that ∫

Γ

ρ(X, t)dX = 1. (6.45)

That is, ρ is just ρN averaged over δX. This concept is illustrated for a one-dimensional distribution in
Fig. 12. Or, equivalently,

ρ(X, t) =

∫

δX

ρN(X, t)dX. (6.46)

We now define a new quantity H, for any ensemble, thus:

H =

∫

Γ

ρ(X, t) ln ρ(X, t)dX. (6.47)

At this stage, we should note the following points:

1. H will depend on the number and form of the regions δX;

2.
∫
ρ ln ρdX is not in general equal to

∫
ρN ln ρNdX;
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3. We can generalise H to the form H =
∫
ρN ln ρdX ≡ 〈ln ρ〉. This step is well justified because ln ρ

is constant over each δX and hence integration of ρN over any such interval would just give ρδX.

Next we state two important lemmas.

Lemma 1 ∫
ρN(t1) ln ρN(t1)dX =

∫
ρN(t2) ln ρN(t2)dX. (6.48)

This follows immediately from Liouville’s theorem.

Lemma 2 There exists Q as a combination of ρN and ρ, such that Q is positive definite ∀ ρN ,
ρ, where

Q = ρN ln ρN − ρN ln ρ− ρN + ρ ≥ 0. (6.49)

It should be emphasised that this is a specially chosen initial case and, as pointed out in Note
2 above, is not true in general.

The development of the theory now proceeds as follows. Let us consider the change in H with time from
t1 to t2, where (t1 < t2).

Time t = t1

We choose our initial conditions for the ensemble such that ρN is uniform in regions δX that correspond
to possible initial states of our assembly. That is, we choose

ρN(t1) = ρ(t1), (6.50)

and so

H1 =

∫
ρ(t1) ln ρ(t1)dX =

∫
ρN(t1) ln ρN(t1)dX. (6.51)

Time t = t2

As time goes on, there will be a mixing effect in phase space, in which the shape of each δX will change,
but the volume of δX will remain the same. Thus

ρN(t2) �= ρ(t2).

The H-function is given by

H2 =

∫
ρ(t2) ln ρ(t2)dX =

∫
ρN(t2) ln ρ(t2)dX, (6.52)

where the second equality follows by Note 3 above. Now consider H1 − H2. From equations (6.51) and
(6.52) we have:

H1 −H2 =

∫
ρN(t1) ln ρN(t1)dX−

∫
ρN(t2) ln ρ(t2)dX. (6.53)

Then, by Lemma 1

H1 −H2 =

∫
ρN(t2) ln ρN(t2)dX−

∫
ρN(t2) ln ρ(t2)dX,

=

∫
{ρN(t2) ln ρN(t2)− ρN(t2) ln ρ(t2}dX. (6.54)

Now, normalization of both distributions gives us
∫
[ρ(t2)− ρN(t2)]dX = 0, (6.55)
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3. We can generalise H to the form H =
∫
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64so we can add ρ(t2)− ρN(t2) to the integrand, without affecting anything, and obtain

H1 −H2 =

∫
{ρN(t2) ln ρN(t2)− ρN(t2) ln ρ(t2)− ρN(t2) + ρ(t2)}dX. (6.56)

Lastly, by Lemma 2,
H1 −H2 ≥ 0, (6.57)

and so
dH

dt
≤ 0. (6.58)

Note that this decrease in the value of H with time corresponds to the decrease with time of the amount
of information that we have about the ensemble, due to mixing in phase space.

6.7 Reduced probability distributions

We have seen that Liouville’s equation is rigorous and contains complete information about an assembly,
yet it cannot give us any indication of whether or not the assembly is in equilibrium. One is led to
the conclusion that, despite possessing complete information about microscopic behaviour, it cannot tell
us anything about macroscopic behaviour. However, from the Gibbs H-theorem, we see that any form
coarse-graining (however little) is sufficient to yield a microscopic description which will reveal the trend
to equilibrium. The overall conclusion is that one must coarse-grain ρN(X, t). In fact there are various
useful ways of doing this, and we shall meet some of these later on, but in this section we shall introduce
the important concept of the reduced probability distribution.

We begin by noting that the probability density ρN(X, t) contains information about all the particles in
the assembly. In practice we can often obtain macroscopic (average) quantities from one-body or two-body
densities. In order to introduce these reduced densities, let us consider the state vector of an assembly as
having N components as follows:

X = {X1,X2, . . .XN}, (6.59)

where X1 ≡ (q1,p1) and so on. Further, consider any one particle such that at any time t its state vector
takes the value X1(t) = x1. That is:

The probability of X1 lying in the elementary volume bounded by x1 and x1+dx1 is δ[X1(t)−
x1].

By considering the average of all such particles (in the vicinity of x1) over all the assemblies in the
ensemble, we can smooth out the delta function and obtain

ρ1(X1, t) = 〈δ[X1(t)− x1]〉. (6.60)

Clearly, by the properties of the delta function, this form satisfies the normalisation condition:
∫

ρ1(X1, t)dX1 = 1. (6.61)

Similarly, the two-body density is obtained as:

ρ2(X1,X2; t) = 〈δ[X1(t)− x1]δ[X2(t)− x2]〉, (6.62)

with ∫
ρ2(X1,X2; t)dX2 = ρ1(X1, t) (6.63)

And in general we can consider the s-body density (for s < N)

ρs(X1,X2, . . .Xs) =

∫
dXs+1 . . .

∫
dXNρN(X1,X2, . . .XN). (6.64)
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densities. In order to introduce these reduced densities, let us consider the state vector of an assembly as
having N components as follows:

X = {X1,X2, . . .XN}, (6.59)

where X1 ≡ (q1,p1) and so on. Further, consider any one particle such that at any time t its state vector
takes the value X1(t) = x1. That is:

The probability of X1 lying in the elementary volume bounded by x1 and x1+dx1 is δ[X1(t)−
x1].

By considering the average of all such particles (in the vicinity of x1) over all the assemblies in the
ensemble, we can smooth out the delta function and obtain

ρ1(X1, t) = 〈δ[X1(t)− x1]〉. (6.60)

Clearly, by the properties of the delta function, this form satisfies the normalisation condition:
∫

ρ1(X1, t)dX1 = 1. (6.61)

Similarly, the two-body density is obtained as:

ρ2(X1,X2; t) = 〈δ[X1(t)− x1]δ[X2(t)− x2]〉, (6.62)

with ∫
ρ2(X1,X2; t)dX2 = ρ1(X1, t) (6.63)

And in general we can consider the s-body density (for s < N)

ρs(X1,X2, . . .Xs) =

∫
dXs+1 . . .

∫
dXNρN(X1,X2, . . .XN). (6.64)

65

Download free eBooks at bookboon.com



Study notes for Statistical Physics:  
A concise, unified overview of the subject

86 

Classical treatment of the Hamiltonian N-body assembly

As ρN(X, t) contains all possible information about position and momentum of particles in the assembly,
the introduction of reduced densities is a systematic way of providing a more coarse-grained description of
the system. It is a way of eliminating information. However, formally, the complete state of the assembly
can still be specified by the set of reduced densities, thus:

f ≡ {ρ1(X1), ρ2(X1,X2), . . . ρN(X . . . XN)} (6.65)

where f is called the distribution vector.

6.7.1 Example: The perfect gas at equilibrium

Later on we shall make use of reduced probability densities when we consider interacting systems. Here
we give a simple introduction to their use in the case of a perfect gas. As an application it is trivial, but
it has the merit of letting some of the main ideas stand out and showing how we may make contact with
the earlier theory of stationary ensembles.

We begin by noting that at equilibrium there is no explicit time dependence in the distribution; and
in statistical terms we have a stationary state. Also, the energy of the particles does not depend on their
position in the box. Thus, from elementary probability considerations, we have:

The probability distribution of a particle with q is uniform ≡ 1/V .

For N particles, and assuming statistical independence, we have

The probability distribution of N particles with q is uniform ≡ 1/V N ,

and so we may write the density distribution as

ρN(q,p,t) =
1

V N
ρN(p). (6.66)

In order to obtain a reduced distribution, we integrate over coordinates and in this particular case we shall
begin by integrating ρN over the position coordinates for all the particles,

∫
ρN(q,p,t)dq1 . . . dqN =

1

V N

∫
dq1 . . .

∫
dqNρN(p). (6.67)

However, the normalizations are

∫

V

dq1 =

∫

V

dq2 = . . .

∫

V

dqN = V, (6.68)

and thus ∫
ρN(q,p,t)dq1 . . . dqN =

1

V N
· V NρN(p) = ρN(p1,p2, . . .pN). (6.69)

For the classical Boltzmann case, each single particle has the distribution

1

Z1

e−p21/2mkT ,

hence we may write

ρN =
1

Z1

e−p21/2mkT × 1

Z1

e−p22/2mkT × . . .
1

Z 1
e−p2N/2mkT (6.70)

as the individual particles do not interact. Next we integrate out (N − 1) momentum coordinates, thus

∫
e−p22/2mkT

Z1

dp2 = . . .

∫
e−p2N/2mkT

Z1

dpN = 1. (6.71)
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From the general definition given in equation (6.64), we identify the 1-body distribution as

ρ1(p1) =

∫
dp2 . . .

∫
dpNρN(p1,p2, . . .pN) ⇒ ρ1(p1) =

e−p21/2mkT

Z1

. (6.72)

As all particles are representative, ρ1(p1) is the probability of finding any particle with momentum
between p1 and p1+ dp1. It should be noted that for this special case there are no interactions, so for any
order we have:

ρ2 = ρ21 ;

ρ3 = ρ31 ;

...

ρN = ρN1 .

However, we should emphasise that in general, this is not so. But, in principle at least, one can still obtain
the reduced densities by integrating out coordinates.

6.8 Basic cells in Γ space

Another way of smoothing out the delta-function structure of probability densities is by dividing up Γ
space into small cells, each of volume v0, say. Then the probability of a particle being in v0 is given by

∫

v0

ρ1(X1)dX1 = 1 if X1 in v0;

= 0 if X1 not in v0. (6.73)

So we can specify the state of the assembly by saying whether each cell of size v0 is occupied or not.
Clearly, if v0 is small enough, then the probability of there being two occupants can be neglected.

In order to get the correct asymptotic result from quantum theory, we must choose:

v0 = h3, (6.74)

where h is Planck’s constant. Note that as this is a volume in phase space, we must have v0 ∼ (qp)3. Thus v0
has dimensions of
(angular momentum)3 or (action)3, as required by the above equation.
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Chapter 7

Derivation of transport equations

In this chapter we consider the most general problem in statistical many-body physics. We consider an
assembly where the individual particles interact with each other and where the assembly itself is not in
equilibrium. By which we mean that, at a macroscopic level, it is possible to detect nonuniformity such
as temperature or density gradients. If we wish to think of a specific instance, then we could consider
a metal rod which is heated at one end and the source of heat removed, as shown in Fig. 13. At the
macroscopic level, this produces a temperature gradient in the rod which in turn produces a flow of heat
until the temperatures even out over the length of the metal rod. In this sense, we have produced a
nonequilibrium system (the differentially heated rod) which then returns to equilibrium. The flow of heat
which accompanies the return to equilibrium is mediated by the interactions between the particles (atoms
at lattice sites) which make up the system.

Of course, there is other nonequilibrium behaviour present. In the real world the metal rod would also
return to the ambient temperature. But, as we are only interested in the interactions inside the assembly
at this stage, we shall ignore interactions with the outside world.

In general it is a characteristic feature of nonequilibrium systems that, once the origin of the nonunifor-
mity is removed, equilibrium is restored by macroscopic flow processes such as mass flow, heat conduction,
macroscopic diffusion and so on. This is perfectly straightforward and familiar phenomenology. However,
in this chapter we shall examine these processes from a microscopic point of view and it will be seen that
certain paradoxes arise. Our objective here is to start from Liouville’s equation, which is both rigorous
and exact (and hence in the context of many-body physics can be regarded as a ‘theory of everything’),
and derive the macroscopic conservation equations of heat and mass flow.

7.1 BBGKY hierarchy (Born, Bogoliubov, Green, Kirkwood, Yvon)

From equation (6.35), we have Liouville’s equation in operator form as

∂ρN
∂t

= LNρN ≡ −[ρN , H],

T1 T2

Q

Figure 7.1: A temperature gradient in a metal bar as an example of a nonequilibrium system. Here Q is the flow
of heat from the higher temperature T1 to the lower temperature T2.
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where the square brackets stand for either a Poisson bracket or a commutator, according to whether we
are using a classical or quantum description respectively.

If we generalise the Hamiltonian H to the form given by (4.2), viz.,

H =
N∑
1=1

Hi +
∑
i,j

Hi,j,

then we use equations (6.34)–(6.36) to show that Liouville’s equation becomes

∂ρN
∂t

=
N∑

n=1

LiρN +
N∑

i<j=1

LijρN (7.1)

where the precise forms of Li, Lij can be deduced from (6.32) and (4.2). We note that we have in fact
introduced an ‘interaction Liouvillian’, Lij.

We use this to derive an equation for the reduced density ρs (s ≤ N). Noting equation (6.64), which
defines ρs, we integrate both sides of (7.1), obtaining:

∫
. . .

∫
dXs+1 . . . dXN

∂ρN
∂t

=
N∑
i=1

∫
. . .

∫
dXs+1 . . . dXNLiρN

+
N∑

i<j=1

∫
. . .

∫
dXs+1 . . . dXNLijρN . (7.2)

The left hand side is straightforward, but the right hand side needs some elementary results from
probability theory, as follows. For all time, we have the conservation relation

∫
. . .

∫
dX1 . . . dXN ρN(X1 . . .XN , t) = constant,

and so it follows immediately that

∂

∂t

∫
dX1 . . . dXN ρN(X1 . . .XN , t) = 0.

Taking this, with (7.1), we can write
∫

dXiLiρN(X1 . . .XN) = 0, if 1 ≤ i ≤ N, (7.3)

and ∫ ∫
dXidXjLijρN(X1 . . .XN) = 0, if 1 ≤ i and j ≤ N. (7.4)

As ∂/∂t is unaffected by
∫
dXs+1 . . .

∫
dXN , the lefthand side of (7.2) becomes

LHS of equation (7.2) ≡ ∂

∂t

∫
dXs+1 . . .

∫
dXNρN(X1 . . .XN) = ∂ρs/∂t.

The righthand side of (7.2) is more complicated: we deal with this by dividing up the summations and
consider various cases of the noninteracting and interacting terms in turn:

RHS of equation (7.2) ≡
∫

dXs+1 . . .

∫
dXN [

N∑
n=1

LiρN

︸ ︷︷ ︸
A

+
∑ N∑

i<j=1

LijρN

︸ ︷︷ ︸
B

].

Now we consider the two terms A and B in turn.

Term A
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We use this to derive an equation for the reduced density ρs (s ≤ N). Noting equation (6.64), which
defines ρs, we integrate both sides of (7.1), obtaining:

∫
. . .

∫
dXs+1 . . . dXN

∂ρN
∂t

=
N∑
i=1

∫
. . .

∫
dXs+1 . . . dXNLiρN

+
N∑

i<j=1

∫
. . .

∫
dXs+1 . . . dXNLijρN . (7.2)

The left hand side is straightforward, but the right hand side needs some elementary results from
probability theory, as follows. For all time, we have the conservation relation

∫
. . .

∫
dX1 . . . dXN ρN(X1 . . .XN , t) = constant,

and so it follows immediately that

∂

∂t

∫
dX1 . . . dXN ρN(X1 . . .XN , t) = 0.

Taking this, with (7.1), we can write
∫

dXiLiρN(X1 . . .XN) = 0, if 1 ≤ i ≤ N, (7.3)

and ∫ ∫
dXidXjLijρN(X1 . . .XN) = 0, if 1 ≤ i and j ≤ N. (7.4)

As ∂/∂t is unaffected by
∫
dXs+1 . . .

∫
dXN , the lefthand side of (7.2) becomes

LHS of equation (7.2) ≡ ∂

∂t

∫
dXs+1 . . .

∫
dXNρN(X1 . . .XN) = ∂ρs/∂t.

The righthand side of (7.2) is more complicated: we deal with this by dividing up the summations and
consider various cases of the noninteracting and interacting terms in turn:

RHS of equation (7.2) ≡
∫

dXs+1 . . .

∫
dXN [

N∑
n=1

LiρN

︸ ︷︷ ︸
A

+
∑ N∑

i<j=1

LijρN

︸ ︷︷ ︸
B

].

Now we consider the two terms A and B in turn.

Term A

69Case 1 For 1 ≤ i ≤ s, Li is unaffected by the integrations, so ρN → ρs;

Case 2 For s+ 1 ≤ i ≤ N , this term vanishes by (7.3).

Term B

Case 1 For 1 ≤ i, j ≤ s, Lij is unaffected by the integrations, therefore ρN → ρs

Case 2 For s+ 1 ≤ i and j ≤ N , this term vanishes by (7.4)

Case 3 For 1 ≤ i ≤ s; s + 1 ≤ j ≤ N the situation is more complicated and we need to consider two
points, as follows:

One, as the particles are identical, it follows that ρN is symmetric in its arguments, thus:

ρN(X1 . . .XA . . .XB . . .XN) = ρN(X1 . . .XB . . .XA . . .XN).

Two, Xj is a dummy variable of integration as
∫
dXs+1 . . .

∫
dXN and s+ 1 ≤ j ≤ N , hence

N∑
j=s+1

LijρN → (N − s)Li,s+1ρN .

Continuing with Term B, Case 3, we note that Li,s+1 is unaffected by
∫
dXs+2 . . .

∫
dXN and hence

(N − s)
s∑

i=1

∫
dXs+1 . . .

∫
dXNLi,s+1 ρN(X1 . . . XN)

= (N − s)
s∑

i=1

∫
dXs+1Li,s+1

∫
dXs+2 . . .

∫
dXN ρN(X1 . . . XN)

= (N − s)
s∑

i=1

∫
dXs+1Li,s+1ρs+1(X1 . . .Xs+1). (7.5)

Thus, in all, equation (7.2) becomes

∂ρs
∂t

=
s∑

i=1

Liρs(X1 . . .Xs) +
s∑

i≤j=1

Lijρs(X1 . . .Xs)

+ (N − s)
s∑

i=1

∫
dXs+1Li,s+1ρs+1(X1 . . .Xs+1). (7.6)

Two points should be noted about this result.

• Essentially this is a s-particle Liouville equation plus a term coupling ρs to ρs+1.

• It follows that equation (7.6) defines an open statistical hierarchy of equations for the reduced
densities. That is, if we wish to calculate the single-body reduced density ρ1, then solving equation
(7.6) depends on our knowing the two-body reduced density ρ2. If we seek to solve for ρ2, then
we need to know ρ3; and so on. The equations of motion for the reduced densities form an open
statistical hierarchy. This is the well known BBGKY hierarchy.

The problem of how to close the BBGKY hierarchy is the fundamental problem of many-body physics.
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7.2 Equations for the reduced distribution functions

Although the formal analysis has so far been in terms of reduced probability densities, our progress towards
the real (macroscopic) world is aided by the introduction of probability distributions, which we denote by
fs and relate to the reduced densities in terms of the system volume V , such that

fs(X1 . . .Xs) ≡ V sρs(X1 . . .Xs). (7.7)

In order to derive evolution equations for the reduced distributions, we introduce a compact form of
Liouville’s equation, thus

∂ρN
∂t

= −ĤN ρN , (7.8)

(where the hat on H means it is an operator) and from (6.32), (4.2), (4.3), and (7.1) we can write

ĤN =
N∑
i=1

pi
m

∂

∂qi
−

N∑
i<j=1

Θij, (7.9)

where the assembly is assumed to be Hamiltonian and to be made up of from identical particles of mass
m. In the interests of a compact formulation, we have introduced the operator

Θij =
∂φij

∂qj

∂

∂pj
+

∂φij

∂qi

∂

∂pi
(7.10)

where φ(|qi − qj|) ≡ φij is the two-body interaction potential. Then it can be shown that the reduced
distribution function fs satisfies the equation:

∂fs
∂t

= −Ĥsfs +
(N − s)

V

s∑
i=1

∫
dXs+1Θi,s+1fs+1(X1 . . .Xs+1). (7.11)

If we now take the thermodynamic limit:

N → ∞, V → ∞ such that v ≡ V/N=constant,

where v is often referred to as the specific volume, then the equation for the reduced distribution functions
takes the form

∂fs
∂t

+ Ĥsfs =
1

v

s∑
i=1

∫
dXs+1Θ̂i,s+1fs+1(X1 . . .Xs+1, t). (7.12)

(When taking the thermodynamic limit, it should be borne in mind the N is normally of the order of
Avogadro’s number, whereas s takes a value of only one or two and hence can be neglected by comparison.)
The most important case is that of the single-body distribution, when s = 1:

∂f1(X1, t)

∂t
+ Ĥ1f1 =

1

v

∫
dX2Θ12f2(X1,X2, t), (7.13)

which is known as the the kinetic equation. Equations of this kind are the basis of balance equations
for mass, momentum, energy; and so on, for an assembly which is not at equilibrium. The resulting
equations, governing, as they do, the transport of quantities like mass or momentum are often referred
to as transport equations.
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7.2 Equations for the reduced distribution functions

Although the formal analysis has so far been in terms of reduced probability densities, our progress towards
the real (macroscopic) world is aided by the introduction of probability distributions, which we denote by
fs and relate to the reduced densities in terms of the system volume V , such that

fs(X1 . . .Xs) ≡ V sρs(X1 . . .Xs). (7.7)

In order to derive evolution equations for the reduced distributions, we introduce a compact form of
Liouville’s equation, thus

∂ρN
∂t

= −ĤN ρN , (7.8)

(where the hat on H means it is an operator) and from (6.32), (4.2), (4.3), and (7.1) we can write

ĤN =
N∑
i=1

pi
m

∂

∂qi
−

N∑
i<j=1

Θij, (7.9)

where the assembly is assumed to be Hamiltonian and to be made up of from identical particles of mass
m. In the interests of a compact formulation, we have introduced the operator

Θij =
∂φij

∂qj

∂

∂pj
+

∂φij

∂qi

∂

∂pi
(7.10)

where φ(|qi − qj|) ≡ φij is the two-body interaction potential. Then it can be shown that the reduced
distribution function fs satisfies the equation:

∂fs
∂t

= −Ĥsfs +
(N − s)

V

s∑
i=1

∫
dXs+1Θi,s+1fs+1(X1 . . .Xs+1). (7.11)

If we now take the thermodynamic limit:

N → ∞, V → ∞ such that v ≡ V/N=constant,

where v is often referred to as the specific volume, then the equation for the reduced distribution functions
takes the form

∂fs
∂t

+ Ĥsfs =
1

v

s∑
i=1

∫
dXs+1Θ̂i,s+1fs+1(X1 . . .Xs+1, t). (7.12)

(When taking the thermodynamic limit, it should be borne in mind the N is normally of the order of
Avogadro’s number, whereas s takes a value of only one or two and hence can be neglected by comparison.)
The most important case is that of the single-body distribution, when s = 1:

∂f1(X1, t)

∂t
+ Ĥ1f1 =

1

v

∫
dX2Θ12f2(X1,X2, t), (7.13)

which is known as the the kinetic equation. Equations of this kind are the basis of balance equations
for mass, momentum, energy; and so on, for an assembly which is not at equilibrium. The resulting
equations, governing, as they do, the transport of quantities like mass or momentum are often referred
to as transport equations.
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7.3 The kinetic equation

At this stage we will find it helpful to unpack our symbolic notation and we begin by reverting to the
canonical phase space coordinates, thus we have f1(X1, t) = f1(q1,p1; t). Now, going back to the definitions
of the probability density and the probability distribution, we may interpret this as:

f1(q1,p1, t)dq1dp1 ≡ the probability of finding a particle at time t with its coordinates in the
range (q1,q1 + dq1;p1,p1 + dp1) × the volume of the assembly.

Thus we have

nf1(q1,p1t) ≡ the number of particles at time t with their phase space coordinates in the shell
(q1,q1 + dq1;p1,p1 + dp1),

where n = N/V is the number density.
Next, we change back to the usual cartesian coordinates, thus:

q1,q2 → x,x′, p1,p2 → mu,mu′, (7.14)

and hence
∫

dq

∫
dp nf1(q,mu; t) =

∫
dx

∫
m3du nf1(x,mu; t)

=

∫
dx

∫
du f(x,u; t) = N, (7.15)

where we have introduced
f(x,u; t) ≡ nm3f1(x,mu; t). (7.16)

This quantity is what we shall mean when we refer to the single-body distribution from now on. Its
normalization is given by equation (7.15) and we may readily derive its governing equation from (7.13),
the result being

∂f 1(X1, t)

∂t
+

p1

m
· ∂

∂q1

f1 = n

∫
dX2Θ̂12f2(X1,X2; t), (7.17)

where it should be noted that we have excluded any effects due to external forces.
It should also be noted that, for sufficiently small density (n), the interaction term on the righthand

side becomes unimportant, except during discrete collisions. Also, we shall restrict our attention to a
dilute ideal gas where, the duration of collisions is very much less than the time between collisions.

Next, we proceed as follows: multiply (7.13) across by nm3, change variables according to (7.14)-(7.16),
and obtain

∂f(x,u; t)

∂t
+ u.∇f(x,u; t) =

∫
dx′

∫
du′Θ̂12 g(x,x

′;u,u′; t), (7.18)

where we have introduced the function

g ≡ n2m6f2(x,x
′;mu,mu′; t). (7.19)

It can be shown (using methods which are beyond the scope of this book) that g may be expressed in
terms of f , in the form:

g(x,x′;u,u′) = f(x,u)f(x′,u′)− f(x,u)f(x′,u′), (7.20)

where the first pairing is due to collisions and the overbars on the second pairing indicate ‘inverse collisions’.
These terms will be explained in the next section where we consider the Boltzmann theory.
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f1(q1,p1, t)dq1dp1 ≡ the probability of finding a particle at time t with its coordinates in the
range (q1,q1 + dq1;p1,p1 + dp1) × the volume of the assembly.

Thus we have

nf1(q1,p1t) ≡ the number of particles at time t with their phase space coordinates in the shell
(q1,q1 + dq1;p1,p1 + dp1),

where n = N/V is the number density.
Next, we change back to the usual cartesian coordinates, thus:

q1,q2 → x,x′, p1,p2 → mu,mu′, (7.14)

and hence
∫
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∫
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=

∫
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∫
du f(x,u; t) = N, (7.15)

where we have introduced
f(x,u; t) ≡ nm3f1(x,mu; t). (7.16)

This quantity is what we shall mean when we refer to the single-body distribution from now on. Its
normalization is given by equation (7.15) and we may readily derive its governing equation from (7.13),
the result being

∂f 1(X1, t)
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+

p1

m
· ∂

∂q1

f1 = n

∫
dX2Θ̂12f2(X1,X2; t), (7.17)

where it should be noted that we have excluded any effects due to external forces.
It should also be noted that, for sufficiently small density (n), the interaction term on the righthand

side becomes unimportant, except during discrete collisions. Also, we shall restrict our attention to a
dilute ideal gas where, the duration of collisions is very much less than the time between collisions.

Next, we proceed as follows: multiply (7.13) across by nm3, change variables according to (7.14)-(7.16),
and obtain

∂f(x,u; t)

∂t
+ u.∇f(x,u; t) =

∫
dx′

∫
du′Θ̂12 g(x,x

′;u,u′; t), (7.18)

where we have introduced the function

g ≡ n2m6f2(x,x
′;mu,mu′; t). (7.19)

It can be shown (using methods which are beyond the scope of this book) that g may be expressed in
terms of f , in the form:

g(x,x′;u,u′) = f(x,u)f(x′,u′)− f(x,u)f(x′,u′), (7.20)

where the first pairing is due to collisions and the overbars on the second pairing indicate ‘inverse collisions’.
These terms will be explained in the next section where we consider the Boltzmann theory.
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Figure 7.2: Reconstituting and inverse two-body collisions.

7.4 The Boltzmann equation

The idea (stated at the end of the previous section) that g could be factored in terms of f was originally
due to Boltzmann: it is his famous assumption of molecular chaos or ‘Stosszahlansatz’. Essentially it
states that particles only interact during collisions: before and after, their motion is uncorrelated.

As eqn.(7.18) gives the rate of change of f(x,u; t) with time, we may make the following identifications:

• ∂f/∂t: the local time-derivative of f ;

• u.∇f : the convective time-derivative of f ;

•
∫
dx′ ∫ du′Θ̂12 g: the rate of change with time of f due to two-body collisions.

On this basis, we may interpret the righthand side of equation (7.18) as

∫
dx′

∫
du′Θ̂12 g(x,x

′;u,u′; t) ≡
(
∂f

∂t

)

coll
, (7.21)

where the subscript ‘coll’ stands for collisions. This term may be further interpreted as

(
∂f

∂t

)

coll
= gain to state u− loss from state u, (7.22)

as illustrated in Fig. 14.
It can be shown, using elementary scattering theory and the assumption of molecular chaos that

(
∂f

∂t

)

coll
=

∫
du

∫
dω σd(ω)|u− u1|

× {f(x,u′; t)f(x,u′
1; t)− f(x,u; t)f(x,u1; t)},

(7.23)

where ω is the solid angle through which a particle is scattered and σd(ω) is the differential scattering
cross-section.
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7.4 The Boltzmann equation

The idea (stated at the end of the previous section) that g could be factored in terms of f was originally
due to Boltzmann: it is his famous assumption of molecular chaos or ‘Stosszahlansatz’. Essentially it
states that particles only interact during collisions: before and after, their motion is uncorrelated.

As eqn.(7.18) gives the rate of change of f(x,u; t) with time, we may make the following identifications:

• ∂f/∂t: the local time-derivative of f ;

• u.∇f : the convective time-derivative of f ;

•
∫
dx′ ∫ du′Θ̂12 g: the rate of change with time of f due to two-body collisions.

On this basis, we may interpret the righthand side of equation (7.18) as

∫
dx′

∫
du′Θ̂12 g(x,x

′;u,u′; t) ≡
(
∂f

∂t

)

coll
, (7.21)

where the subscript ‘coll’ stands for collisions. This term may be further interpreted as

(
∂f

∂t

)

coll
= gain to state u− loss from state u, (7.22)

as illustrated in Fig. 14.
It can be shown, using elementary scattering theory and the assumption of molecular chaos that

(
∂f

∂t

)

coll
=

∫
du

∫
dω σd(ω)|u− u1|

× {f(x,u′; t)f(x,u′
1; t)− f(x,u; t)f(x,u1; t)},

(7.23)

where ω is the solid angle through which a particle is scattered and σd(ω) is the differential scattering
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Substituting (7.23) and (7.21) into (7.18) yields the Boltzmann equation:

∂f(x,u; t)

∂t
+ (u.∇)f(x,u; t) =

∫
du1

∫
dω σd(ω)|u− u1|

× {f(x,u′; t)f(x,u′
1; t)− f(x,u; t)f(x,u1; t)}.

(7.24)

Or, in a more compact notation:

∂f

∂t
+ (u.∇)f =

∫
du1

∫
dω σd |u− u1| × {f ′f ′

1 − ff1}, (7.25)

where f ≡ f(x,u; t), f ′ ≡ f(x,u′; t); and so on.

7.5 The Boltzmann H-theorem

In order to work in Boltzmann’s original notation, we write the expression for the entropy S as:

S = −kH, (7.26)

where k is the Boltzmann constant and the function H is defined by

H =

∫
duf(u, t) ln f(u, t). (7.27)

Note that this is still the same general form for the Boltzmann entropy, but now it is based on the
distribution f , rather than ρ, which was the solution of the Liouville equation. Also, for simplicity, we
ignore spatial variations: that is, we shall drop the u.∇ term in (7.25).

Now we want to show that the entropy increases or remains constant. We begin by differentiating both
sides of (7.27) with respect to the time. The result is

dH

dt
=

∫
du

∂f

∂t
[1 + ln f ]. (7.28)

Then we substitute for ∂f/∂t on the righthand side, from (7.25), with (u.∇) = 0, and (7.28) becomes

dH

dt
=

∫
du

∫
du1

∫
dω σ d|u− u1|{f ′f ′

1 − ff1}(1 + ln f). (7.29)

Now, we can interchange u and u1: this leaves everything unchanged, as they are dummy variables, so
that we have:

dH

dt
=

∫
du

∫
du1

∫
dω σ d|u1 − u|{f ′

1f
′ − f1f}(1 + ln f), (7.30)

which is equivalent to equation (7.29), so that we may add (7.29) and (7.30), and divide across by a factor
of two, to obtain:

dH

dt
=

1

2

∫
du

∫
du1

∫
dωσd|u1 − u|{f ′

1f
′ − f1f}[2 + ln(ff1)]. (7.31)

Now this integrand is invariant under the interchange of {u,u1} and {u′,u′
1}, as this merely interchanges

reconstituting collisions and inverse collisions. Hence (7.31) implies

dH

dt
=

1

2

∫
du′

∫
du′

1

∫
dω′σ′

d |u′
1 − u′|{ff1 − f ′f ′

1}[2 + ln(f ′f ′
1)]

= −1

2

∫
du′

∫
du′

1

∫
dω′σ′

d |u′
1 − u′|{f ′f ′

1 − ff1}[2 + ln(f ′f ′
1)].

(7.32)
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At this stage we note that:
du du1 = du′ du′

1,

|u− u1| = |u′ − u′
1|,

and
σd(ω) = σd(ω

′);

so we add (7.31) to (7.32), and again divide across by a factor two to obtain:

dH

dt
=

1

4

∫
du

∫
du′

∫
dω σd |u1 − u|{f ′

1f
′ − f1f}[ln(ff1)− ln(f ′f ′

1)].

The integrand on the righthand side is never positive: thus we conclude that

dH

dt
≤ 0, (7.33)

and, from (7.26),
dS

dt
≥ 0. (7.34)

Thus the entropy increases as the assembly moves irreversibly towards equilibrium.
This result is the Boltzmann H-theorem. It may usefully be considered in the context of the generalised

H-theorem due to Gibbs, which we discussed in Chapter 5. There we found that the entropy constructed
from the solution to the Liouville equation did not change with time. But, if that solution was coarse-
grained in some way (which amounts to giving up some information about the microstate of the system),
then the entropy was found to increase with time. Here, in the Boltzmann result, the coarse-graining has
been quite extensive, as we have moved from the N -body density ρN (or its corresponding distribution) to
the single-body distribution, which is governed by the Boltzmann equation. Evidently the Boltzmann H-
theorem is a consequence of the form of the Boltzmann equation; and its correspondence with experience
amounts to a rather fundamental check on that equation.

7.6 Macroscopic balance equations

In any individual collision, a quantity b may be conserved (for example, b can stand for any one of mass or
momentum or energy; and so on) and the associated microscopic conservation law for a two-body collision
may be written as

b+ b1 = b′ + b′1. (7.35)

That is, the total amount of property b possessed by the two particles before the collision is the same as
the total amount of b afterwards, although the relative proportion possessed by each particle will normally
be changed. It can be shown (and is probably intuitively obvious) that the collision term in the Boltzmann
equation must satisfy ∫

du b(x, u)

(
∂f

∂t

)

coll
= 0. (7.36)

Accordingly, the macroscopic conservation law corresponding to equation (7.35) may be found from (7.24),
with the righthand side set equal to zero, and we do this as follows.

First we multiply each term on the lefthand side of (7.24) by b(x,u); and, integrating with respect to
u, we obtain the general macroscopic relation

∫
d3u b(x,u)

[
∂

∂t
+ ui

∂

∂xi

]
f(x,u; t) = 0, (7.37)

where we have rewritten u.∇ in cartesian tensor notation and the index i takes the values 1, 2 or 3. Then,
as b is independent of t, we can rewrite this as:

∂

∂t

∫
d3 ubf +

∂

∂xi

∫
d3u buif −

∫
d3u

∂b

∂xi

uif = 0. (7.38)
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Next, if we denote the average of any property A against f by 〈A〉, we may write

〈A〉 =
∫
d3uAf∫
d3uf

=

∫
d3uAf

n
, (7.39)

where

n = n(x, t) ≡
∫

d3u f(x,u; t). (7.40)

As the number density n does not depend on u, we can rewrite (7.39) as

〈nA〉 =
∫

d3uAf. (7.41)

Lastly, in view of all this, equation (7.38) can now be rewritten in the neat form:

∂

∂t
〈nb〉+ ∂

∂xi

〈nuib〉 − n〈ui
∂b

∂xi

〉 = 0. (7.42)

Now, if we choose b to be mass or momentum (say), equation (7.42) will lead to the corresponding
macroscopic conservation law. In the next section, we shall consider conservation of mass as an example.

7.6.1 The continuity equation as an example

In the macroscopic study of fluids, conservation of mass is seen as a consequence of the continuous nature of
the fluid, and hence the statement of conservation of mass is often referred to as the ‘continuity equation’.

Our procedure is now quite straightforward. We choose b = m, the mass of a particle, and substitute
accordingly in equation (7.42). If we take the mass of the particle to be constant, then the last term on
the lefthand side vanishes and we obtain

∂(nm)

∂t
+

∂nm〈ui〉
∂xi

= 0. (7.43)

The macroscopic velocity field may be written as

U(x, t) ≡ 〈ui〉, (7.44)

and we define the mass density ρ to be

ρ(x, t) ≡ mn(x, t). (7.45)

Hence, with substitutions from (7.44) and (7.45), equation (7.43) becomes the usual continuity equation
as encountered in the subject of continuum mechanics:

∂ρ

∂t
+ div(ρU) = 0. (7.46)

It may be of interest to note that this equation is normally derived in continuum mechanics by entirely
macroscopic arguments. We can derive the Euler equation (which expresses consvervation of momentum
in an inviscid fluid) in much the same way as we have done here by taking b = mui. However, in order to
include viscous effects (that is, to derive the Navier-Stokes equation) we must take the righthand side of the
Boltzmann equation into account. We shall not pursue that here, except to remark that the Navier-Stokes
equation can be derived both by microscopic methods (as here) and by macroscopic methods based on
conservation of momentum examined with respect to a fixed control volume in the fluid continuum. Both
methods essentially rely on an assumption of a linear relationship between viscous shear stress and the
rate of strain tensor (in effect, Newton’s law of viscosity).
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Chapter 8

Dynamics of Fluctuations

We have previously discussed energy fluctuations in the canonical ensemble and fluctuations in particle
number in the grand canonical ensemble. We now consider time-dependent behaviour in assemblies which
are at thermal equilibrium. Some examples of nonstationary equilibrium systems are:

• Brownian motion of colloidal particles floating in a liquid.

• movement of a small mirror suspended in a rarefied gas.

• thermal noise in electronic or optical systems.

We shall take the case of Brownian motion as a specific example.

8.1 Brownian motion and the Langevin equation

Consider the motion of large particles (e.g. pollen grains) floating in water. The particles move about
in an irregular fashion due to molecular collisions. Take one-dimensional motion (i.e. a one-dimensional
projection of the actual motion) for simplicity. If we plot the displacement X(t) against the elapsed time
t then we obtain the graph shown in Fig. 15.

If we adopt a macroscopic view, then we note that a particle moving with velocity u, experiences
Stokes drag with coefficient η (per unit mass). Applying Newton’s second law of motion then yields the
macroscopic equation of motion in the form

u̇ = −ηu, (8.1)

where the dot denotes time differentiation.
At the microscopic level, the particle experiences the molecular impacts as a random force. If the mean

response of the particle is given by equation (8.1), then the microscopic equation of motion may be written
as:

u̇ = −ηu+ F (t), (8.2)

where F (t) is a random force per unit mass due to collisions with fluid molecules. This equation is usually
known as the Langevin equation.

Essentially we have to model the effect of the molecular impacts and the next step is to specify F in
such a way that it provides a physically plausible model. To begin with, it is clear that the average effect
of impacts must be zero and hence the random force must satisfy the condition

〈F (t)〉 = 0, (8.3)

which ensures that the microscopic and macroscopic laws are consistent, when we average equation (8.2)
term by term to obtain (8.1).

In choosing a form for F (t), we may express the idea of the irregularity of molecular collisions by
assuming that F (t) is only correlated with itself at very short times t ≤ tc, where tc is the duration of
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Figure 8.1: Variation of displacement x with time t in a one-dimensional random walk.

a collision. This idea may be put in more quantitative form, by considering the autocorrelation of the
random force at two different times t1 and t2. Let

〈F (t1)F (t2)〉 = w(t1 − t2), (8.4)

and

W (t) =

∫ t

0

w(τ)dτ, (8.5)

where
W (t) → W = a constant,

for values of t very much greater than tc. This behaviour is illustrated in Figures 8.2 and 8.3.
Now we solve the Langevin equation as given by (8.2), taking as initial conditions that u = u0 at t = 0,

to obtain

u = u0e
−ηt + e−ηt

∫ t

0

dt′eηt
′
F (t′), (8.6)

for the velocity of a pollen grain at any time t.
We may make a consistency check by averaging this solution over the ensemble, using equation (8.3),

to find
〈u〉 = u0e

−ηt, (8.7)

which is, as required, the solution to the macroscopic equation of motion (8.1).
However, we can find a solution which depends on the random force F , if we first square each side of

equation (8.6), and then average, to obtain

〈u2〉 = u2
0e

−2ηt + e−2ηtJ(t), (8.8)

where

J(t) =

∫ t

0

dt1

∫ t

0

dt2e
η(t1+t2)〈F (t1)F (t2)〉. (8.9)

Note that the ‘cross terms’, which are linear in F (t), vanish as a consequence of (8.3). Now substitute
from (8.4) for the autocorrelation, and make the change of variables,

τ = t1 − t2; T = t1 + t2, (8.10)
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Figure 8.4: Change of field of integration with change of time variable.

to obtain

J(t) =

∫ t

0

dt1

∫ t

0

dt2e
ηTw(τ) = 2

∫

A′
dTdτeηTw(τ), (8.11)

where we have used ∣∣∣∣
∂(t1, t2)

∂(τ, T )

∣∣∣∣ = 2.

To find the new field of integration A′, consider the old field of integration A. We have

∫ t

0

dt1

∫ t

0

dt2f(t1, t2) ⇒ 2{
∫ t

0

dT

∫ T

0

dτ +

∫ 2t

t

dT

∫ 2t−T

0

dτ}g(τ, T ).

This procedure is illustrated in Fig. 18. With these changes, equation (8.11) yields

J(t) = 2

∫ t

0

dTeηT
∫ T

0

dτw(τ) + 2

∫ 2t

t

dT

∫ 2t−T

0

dτw(τ)

= 2

∫ t

0

dTeηTW (T ) + 2

∫ 2t

t

dTeηTW (2t− T ). (8.12)

However, for long diffusion times t >> tc, W (t) tends to the constant value W . Therefore,

J(t) ≈ 2

∫ 2t

0

dTeηTW ≈ 2W

η

[
e2ηt − 1

]
(8.13)

and, substituting back into (8.8),

〈u2〉 = u2
oe

−2ηt +
2W

η

[
1− e−2ηt

]
(8.14)

80Now let us consider two cases. First, for short diffusion times (i.e. small t), equation (8.14) reduces to

〈u2〉 ≈ u2
o.

Second, for large t,
e−2ηt → 0,

and
〈u2〉 = 2W/η

That is, for long diffusion times, the motion is determined by fluctuations and the initial velocity is
forgotten.

As the host fluid is in thermal equilibrium, the large particles come into equilibrium with it, due to
collisions, as time goes on. We can demonstrate this approach to equilibrium by rearranging equation
(8.14) and substituting the equilibrium value of 〈u2〉 = kT/m, thus we can show that

〈u2〉 = kT

m
+

[
u2
0 −

kT

m

]
e−2ηt. (8.15)

Coming to equilibrium requires a coarse-grained description in which fine details for t < tc are smoothed
out.

8.2 Fluctuation-dissipation relations

We now generalise the work of the previous section to the more general topic of fluctuation-dissipation
relations. Moreover, we now extend our interest to two classes of phenomena. First, as in the preceding
section, we are interested in Brownian motion or thermal noise. That is, phenomena which are driven by
the fluctuations and with their mean response also controlled by them. Such systems are characterized by
their two-time equilibrium correlation functions: 〈F (t1)F (t2)〉, 〈u(t1)u(t2)〉, 〈x(t1)x(t2)〉 and so on.

Second, we will also be interested in the effect of external fields. Equilibrium systems have high
symmetry. If we apply an external field, such as electric, magnetic or pressure fields, then we break some
of the symmetries, leading to new observables, such as the electric current (or polarization), magnetization
and fluid flow.

The general subject, which embraces both topics, is linear response theory (note that the restriction to
linearity rules out nonlinear optics or turbulence) and can be envisaged by treating the system as a ‘black
box’, in which the response function can be related to the pair-correlation of relevant fluctuating variables
at thermal equilibrium. The general result is known as a fluctuation-dissipation relation.

8.3 The response (or Green) function

In thermodynamics, the response functions of systems are macroscopic quantities such as the heat capacity
or the magnetic susceptibility. However, in a microscopic description, the response function of a system
is related to the Green function as encountered in the theory of differential equations. In the final section
of this chapter, we shall show how to calculate the macroscopic response function from the microscopic
form. In this section we introduce the concept of the Green function.

We begin by remarking that the Green function is of great importance in theoretical physics and that
a proper introduction to it can be found in various texts on mathematical methods. However, for our
present purposes, it will be sufficient to give a rather informal and pragmatic introduction to it here.

The idea arises in connection with the solution of the linear differential equations which are important
in mathematical physics. Essentially, one can think of it either as a labour saving device or as a very
powerful method of carrying out symbolic manipulations.

Suppose we consider, as a specific example, Laplace’s equation for the electrostatic potential φ in a
region where there are no sinks or sources. This may be written as

∇2φ = 0, (8.16)
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Dynamics of FluctuationsNow let us consider two cases. First, for short diffusion times (i.e. small t), equation (8.14) reduces to

〈u2〉 ≈ u2
o.

Second, for large t,
e−2ηt → 0,

and
〈u2〉 = 2W/η

That is, for long diffusion times, the motion is determined by fluctuations and the initial velocity is
forgotten.

As the host fluid is in thermal equilibrium, the large particles come into equilibrium with it, due to
collisions, as time goes on. We can demonstrate this approach to equilibrium by rearranging equation
(8.14) and substituting the equilibrium value of 〈u2〉 = kT/m, thus we can show that

〈u2〉 = kT

m
+

[
u2
0 −

kT

m

]
e−2ηt. (8.15)

Coming to equilibrium requires a coarse-grained description in which fine details for t < tc are smoothed
out.

8.2 Fluctuation-dissipation relations

We now generalise the work of the previous section to the more general topic of fluctuation-dissipation
relations. Moreover, we now extend our interest to two classes of phenomena. First, as in the preceding
section, we are interested in Brownian motion or thermal noise. That is, phenomena which are driven by
the fluctuations and with their mean response also controlled by them. Such systems are characterized by
their two-time equilibrium correlation functions: 〈F (t1)F (t2)〉, 〈u(t1)u(t2)〉, 〈x(t1)x(t2)〉 and so on.

Second, we will also be interested in the effect of external fields. Equilibrium systems have high
symmetry. If we apply an external field, such as electric, magnetic or pressure fields, then we break some
of the symmetries, leading to new observables, such as the electric current (or polarization), magnetization
and fluid flow.

The general subject, which embraces both topics, is linear response theory (note that the restriction to
linearity rules out nonlinear optics or turbulence) and can be envisaged by treating the system as a ‘black
box’, in which the response function can be related to the pair-correlation of relevant fluctuating variables
at thermal equilibrium. The general result is known as a fluctuation-dissipation relation.

8.3 The response (or Green) function

In thermodynamics, the response functions of systems are macroscopic quantities such as the heat capacity
or the magnetic susceptibility. However, in a microscopic description, the response function of a system
is related to the Green function as encountered in the theory of differential equations. In the final section
of this chapter, we shall show how to calculate the macroscopic response function from the microscopic
form. In this section we introduce the concept of the Green function.

We begin by remarking that the Green function is of great importance in theoretical physics and that
a proper introduction to it can be found in various texts on mathematical methods. However, for our
present purposes, it will be sufficient to give a rather informal and pragmatic introduction to it here.

The idea arises in connection with the solution of the linear differential equations which are important
in mathematical physics. Essentially, one can think of it either as a labour saving device or as a very
powerful method of carrying out symbolic manipulations.

Suppose we consider, as a specific example, Laplace’s equation for the electrostatic potential φ in a
region where there are no sinks or sources. This may be written as

∇2φ = 0, (8.16)
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Figure 8.5: Schematic view of system response.

where we take the one-dimensional case for simplicity, with ∇2 = d2/dx2. This is known as the homoge-
neous form of the equation. If there are sources present—in the form of a continuous charge density ρ(x),
say—then the equation becomes

∇2φ = ρ(x), (8.17)

which is the inhomogeneous form and is known as Poisson’s equation.
Now, Laplace’s equation can be solved for a particular geometry and boundary conditions and the

resulting solution is unique. In contrast, there are as many solutions of the Poisson equation as one can
invent or envisage different charge distributions ρ(x).

Exactly the same considerations would arise in other situations in mathematical physics. For instance,
in the case of simple harmonic motion, the solution to the homogeneous equation will represent a sinusoidal
oscillation (which is damped, if friction is included in the problem). However, if we connect a signal
generator to the system, then there will be as many possible solutions (sine waves, square waves, sawtooth
waves . . . ) as the generator has output waveforms.

The labour saving aspect arises because we can often solve an ‘almost homogeneous’ equation and use
the resulting unique solution (known as the Green function) to find the solution of the inhomogeneous
cases in a straightforward way. To see this, let us write a general homogeneous differential equation in the
form:

Lφ = 0, (8.18)

where L stands for some combination of differential operators. For example, in the case of Laplace’s
equation, the operator L would be the Laplacian. Clearly L should be linear, that is it should not depend
on φ.

Now, keeping to one dimension for simplicity, we rewrite this equation as

LG(x, x′) = δ(x− x′), (8.19)

where G(x, x′) is the Green function and δ(x− x′) is the Dirac delta function. There are many represen-
tations of the delta function, but the simplest is probably obtained from the use of the unit step function
Θ(x− x′), which is defined by:

Θ(x− x′) =

{
1 for x > x′

0 for x < x′.
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Figure 8.5: Schematic view of system response.

where we take the one-dimensional case for simplicity, with ∇2 = d2/dx2. This is known as the homoge-
neous form of the equation. If there are sources present—in the form of a continuous charge density ρ(x),
say—then the equation becomes

∇2φ = ρ(x), (8.17)

which is the inhomogeneous form and is known as Poisson’s equation.
Now, Laplace’s equation can be solved for a particular geometry and boundary conditions and the

resulting solution is unique. In contrast, there are as many solutions of the Poisson equation as one can
invent or envisage different charge distributions ρ(x).

Exactly the same considerations would arise in other situations in mathematical physics. For instance,
in the case of simple harmonic motion, the solution to the homogeneous equation will represent a sinusoidal
oscillation (which is damped, if friction is included in the problem). However, if we connect a signal
generator to the system, then there will be as many possible solutions (sine waves, square waves, sawtooth
waves . . . ) as the generator has output waveforms.

The labour saving aspect arises because we can often solve an ‘almost homogeneous’ equation and use
the resulting unique solution (known as the Green function) to find the solution of the inhomogeneous
cases in a straightforward way. To see this, let us write a general homogeneous differential equation in the
form:

Lφ = 0, (8.18)

where L stands for some combination of differential operators. For example, in the case of Laplace’s
equation, the operator L would be the Laplacian. Clearly L should be linear, that is it should not depend
on φ.

Now, keeping to one dimension for simplicity, we rewrite this equation as

LG(x, x′) = δ(x− x′), (8.19)

where G(x, x′) is the Green function and δ(x− x′) is the Dirac delta function. There are many represen-
tations of the delta function, but the simplest is probably obtained from the use of the unit step function
Θ(x− x′), which is defined by:

Θ(x− x′) =

{
1 for x > x′

0 for x < x′.

82Then we define the delta function to be the derivative of the unit step function, thus:

δ(x− x′) ≡ dΘ(x− x′)

dx
. (8.20)

We note that this implies that the delta function is zero everywhere except where x = x′, when it is infinite
in value.

If we now consider the general form of the corresponding inhomogeneous equation, we may write this
as

Lφ = ρ(x), (8.21)

with the general solution

φ(x) =

∫
G(x, x′)ρ(x′)dx′. (8.22)

We can see how this comes about, as follows. Formally we may write the solution of the general
inhomogeneous equation (8.22) as:

φ(x) = L−1ρ(x), (8.23)

where the inverse of L is defined by the relationship LL−1 = 1. Now we wish to find the inverse of the
operator L, and there are various methods of doing this. But for the purposes of our present informal
treatment, we note that the inverse of L may be expressed in terms of the Green function and the delta
function by means of equation (8.19), thus:

G(x, x′) = L−1δ(x− x′), (8.24)

where we have operated on each side of (8.19) from the left with L−1. Now, we multiply each side of this
equation by ρ(x′) and integrate with respect to x′:

φ(x) =

∫
G(x, x′)ρ(x′)dx′ =

∫
L−1δ(x− x′)ρ(x′)dx′ = L−1ρ(x). (8.25)

Then, when this result is taken in conjunction with equation (8.24), equation (8.23) for the general solution
follows.

8.4 General derivation of the fluctuation-dissipation theorem

This is a generalization of our treatment of Brownian motion. The Langevin equation, in the form of (8.2)
is now written as

du

dt
+ ηu(t) = F (t). (8.26)

As before, the random force is chosen such that

〈F (t)〉 = 0, (8.27)

so that the molecular force is then specified in terms of its autocorrelation:

〈F (t)F (t′)〉 = w(t− t′) (8.28)

The correlation function of the force satisfies

W (t) =

∫ t

0

w(τ)dτ, (8.29)

where W (t) → W as t → ∞ and W is a constant.
The Green function of the Langevin equation is

G(t, t′) = e−η(t−t′), for t ≥ t′. (8.30)

83

Then we define the delta function to be the derivative of the unit step function, thus:

δ(x− x′) ≡ dΘ(x− x′)

dx
. (8.20)

We note that this implies that the delta function is zero everywhere except where x = x′, when it is infinite
in value.

If we now consider the general form of the corresponding inhomogeneous equation, we may write this
as

Lφ = ρ(x), (8.21)

with the general solution

φ(x) =

∫
G(x, x′)ρ(x′)dx′. (8.22)

We can see how this comes about, as follows. Formally we may write the solution of the general
inhomogeneous equation (8.22) as:

φ(x) = L−1ρ(x), (8.23)

where the inverse of L is defined by the relationship LL−1 = 1. Now we wish to find the inverse of the
operator L, and there are various methods of doing this. But for the purposes of our present informal
treatment, we note that the inverse of L may be expressed in terms of the Green function and the delta
function by means of equation (8.19), thus:

G(x, x′) = L−1δ(x− x′), (8.24)

where we have operated on each side of (8.19) from the left with L−1. Now, we multiply each side of this
equation by ρ(x′) and integrate with respect to x′:

φ(x) =

∫
G(x, x′)ρ(x′)dx′ =

∫
L−1δ(x− x′)ρ(x′)dx′ = L−1ρ(x). (8.25)

Then, when this result is taken in conjunction with equation (8.24), equation (8.23) for the general solution
follows.

8.4 General derivation of the fluctuation-dissipation theorem

This is a generalization of our treatment of Brownian motion. The Langevin equation, in the form of (8.2)
is now written as

du

dt
+ ηu(t) = F (t). (8.26)

As before, the random force is chosen such that

〈F (t)〉 = 0, (8.27)

so that the molecular force is then specified in terms of its autocorrelation:

〈F (t)F (t′)〉 = w(t− t′) (8.28)

The correlation function of the force satisfies

W (t) =

∫ t

0

w(τ)dτ, (8.29)

where W (t) → W as t → ∞ and W is a constant.
The Green function of the Langevin equation is

G(t, t′) = e−η(t−t′), for t ≥ t′. (8.30)
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Then we define the delta function to be the derivative of the unit step function, thus:

δ(x− x′) ≡ dΘ(x− x′)

dx
. (8.20)

We note that this implies that the delta function is zero everywhere except where x = x′, when it is infinite
in value.

If we now consider the general form of the corresponding inhomogeneous equation, we may write this
as

Lφ = ρ(x), (8.21)

with the general solution

φ(x) =

∫
G(x, x′)ρ(x′)dx′. (8.22)

We can see how this comes about, as follows. Formally we may write the solution of the general
inhomogeneous equation (8.22) as:

φ(x) = L−1ρ(x), (8.23)

where the inverse of L is defined by the relationship LL−1 = 1. Now we wish to find the inverse of the
operator L, and there are various methods of doing this. But for the purposes of our present informal
treatment, we note that the inverse of L may be expressed in terms of the Green function and the delta
function by means of equation (8.19), thus:

G(x, x′) = L−1δ(x− x′), (8.24)

where we have operated on each side of (8.19) from the left with L−1. Now, we multiply each side of this
equation by ρ(x′) and integrate with respect to x′:

φ(x) =

∫
G(x, x′)ρ(x′)dx′ =

∫
L−1δ(x− x′)ρ(x′)dx′ = L−1ρ(x). (8.25)

Then, when this result is taken in conjunction with equation (8.24), equation (8.23) for the general solution
follows.

8.4 General derivation of the fluctuation-dissipation theorem

This is a generalization of our treatment of Brownian motion. The Langevin equation, in the form of (8.2)
is now written as

du

dt
+ ηu(t) = F (t). (8.26)

As before, the random force is chosen such that

〈F (t)〉 = 0, (8.27)

so that the molecular force is then specified in terms of its autocorrelation:

〈F (t)F (t′)〉 = w(t− t′) (8.28)

The correlation function of the force satisfies

W (t) =

∫ t

0

w(τ)dτ, (8.29)

where W (t) → W as t → ∞ and W is a constant.
The Green function of the Langevin equation is

G(t, t′) = e−η(t−t′), for t ≥ t′. (8.30)

83This may be verified by direct substitution into the Langevin equation with a delta function input. To
simplify the mathematics, we choose the special case of ‘white noise’. That is, the random force correlation
takes the form

w(t− t′) = Wδ(t− t′). (8.31)

As before, we take the general solution of the Langevin equation to be given by equation (8.6), and we
rewrite this in terms of a new dummy time variable s as

u(t) = u0e
−ηt + e−ηt

∫ t

0

dseηsF (s). (8.32)

Now we form the general two-time correlation of velocities at times t and t′ as

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ e−η(t+t′)

∫ t

0

ds

∫ t′

0

ds′eη(s+s′)〈F (s)F (s′)〉, (8.33)

where we have substituted from (8.33) with appropriate amendments to give u(t′) as well as u(t). Thus,
invoking (8.32) for the case of white noise, we have

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ e−η(t+t′)

∫ t

0

ds

∫ t′

0

ds′eη(s+s′)Wδ(s− s′), (8.34)

and, using the sifting property of the delta function to eliminate s, we obtain

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ eη(t+t′)W

∫ t′

0

e2ηs
′
ds′. (8.35)

Then, doing the integral over s′,

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ e−η(t+t′)W

2η

[
e2ηt

′ − 1
]
, (8.36)

re-arranging

〈u(t)u(t′)〉 =
W

2η
e−ηt+ηt′

+

[
u2
0 −

W

2η

]
e−ηt−ηt′ , (8.37)

and setting t = t′, we obtain

〈u2(t′)〉 =
W

2η
+

[
u2
0 −

W

2η

]
e−2ηt′ . (8.38)

Now if we multiply equation (8.39) through on the left-hand side by G(t, t′), and on the right-hand side
by the explicit form of the Green function as given by equation (8.31), it is easily seen that we obtain
〈u(t)u(t′)〉, as given by equation (8.38). Hence the general relationship is

〈u(t)u(t′)〉 = G(t, t′)〈u2(t′)〉. (8.39)

This is the most general form of the fluctuation–dissipation theorem. The significance of this result is that
the response (or Green) function of the system is determined by the correlation of the fluctuations about
equilibrium.
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This may be verified by direct substitution into the Langevin equation with a delta function input. To
simplify the mathematics, we choose the special case of ‘white noise’. That is, the random force correlation
takes the form

w(t− t′) = Wδ(t− t′). (8.31)

As before, we take the general solution of the Langevin equation to be given by equation (8.6), and we
rewrite this in terms of a new dummy time variable s as

u(t) = u0e
−ηt + e−ηt

∫ t

0

dseηsF (s). (8.32)

Now we form the general two-time correlation of velocities at times t and t′ as

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ e−η(t+t′)

∫ t

0

ds

∫ t′

0

ds′eη(s+s′)〈F (s)F (s′)〉, (8.33)

where we have substituted from (8.33) with appropriate amendments to give u(t′) as well as u(t). Thus,
invoking (8.32) for the case of white noise, we have

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ e−η(t+t′)

∫ t

0

ds

∫ t′

0

ds′eη(s+s′)Wδ(s− s′), (8.34)

and, using the sifting property of the delta function to eliminate s, we obtain

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ eη(t+t′)W

∫ t′

0

e2ηs
′
ds′. (8.35)

Then, doing the integral over s′,

〈u(t)u(t′)〉 = u2
0e

−η(t+t′)

+ e−η(t+t′)W

2η

[
e2ηt

′ − 1
]
, (8.36)

re-arranging

〈u(t)u(t′)〉 =
W

2η
e−ηt+ηt′

+

[
u2
0 −

W

2η

]
e−ηt−ηt′ , (8.37)

and setting t = t′, we obtain

〈u2(t′)〉 =
W

2η
+

[
u2
0 −

W

2η

]
e−2ηt′ . (8.38)

Now if we multiply equation (8.39) through on the left-hand side by G(t, t′), and on the right-hand side
by the explicit form of the Green function as given by equation (8.31), it is easily seen that we obtain
〈u(t)u(t′)〉, as given by equation (8.38). Hence the general relationship is

〈u(t)u(t′)〉 = G(t, t′)〈u2(t′)〉. (8.39)

This is the most general form of the fluctuation–dissipation theorem. The significance of this result is that
the response (or Green) function of the system is determined by the correlation of the fluctuations about
equilibrium.
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Chapter 9

Quantum dynamics

We have seen that Liouville’s equation can be expressed in an operator (Poisson bracket) formalism which
goes over naturally into a quantum formalism. We conclude this book with a brief look at the subject of
quantum dynamics.

Although the introduction of a probability density ρ involves a form of coarse-graining in quantum
mechanics, in that the phase information contained in the wave function is lost, the formalism still preserves
the invariants of the Liouville equation. Accordingly, the general formalism is still not compatible with
the second law of thermodynamics and a further coarse-graining is needed.

9.1 Fermi’s master equation

Coarse-graining implies the discarding of information from our description of the system. Fermi suggested
that this could be done by describing the system in terms of a set of approximate eigenstates |i〉. These
are the eigenstates of a model Hamiltonian Ĥ0 which differs from the true Hamiltonian Ĥ by a small
perturbation ĥ (say). Thus:

Ĥ = Ĥ0 + ĥ. (9.1)

In other words, the |i〉 are exact for Ĥ0 but only approximate for Ĥ.
The matrix elements in this basis are:

hij = 〈i|ĥ|j〉 = h∗
ji, (9.2)

and the last step follows from the fact that h is Hermitian.
This perturbation ĥ induces quantum jumps between approximate states |i〉.

9.1.1 Fermi’s golden rule

Fermi assumed that the system could jump from a state |i〉 with energy Ei into some narrow band of
other states |j〉 having energy within δE of Ei. Using time-dependent perturbation theory, he showed that
the probability per unit time of a jump from an initial state |i〉 to a final state |j〉 is given by:

νij =
2π

h̄δE
|hij|2. (9.3)

This is: Fermi’s golden rule.
Note:

1. According to the golden rule, νij cannot be negative.

2. Because hij = h∗
ji, the jump rates obey the rule:

νij = νji. (9.4)

This is the: principle of jump rate symmetry.
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This perturbation ĥ induces quantum jumps between approximate states |i〉.

9.1.1 Fermi’s golden rule

Fermi assumed that the system could jump from a state |i〉 with energy Ei into some narrow band of
other states |j〉 having energy within δE of Ei. Using time-dependent perturbation theory, he showed that
the probability per unit time of a jump from an initial state |i〉 to a final state |j〉 is given by:

νij =
2π

h̄δE
|hij|2. (9.3)

This is: Fermi’s golden rule.
Note:

1. According to the golden rule, νij cannot be negative.

2. Because hij = h∗
ji, the jump rates obey the rule:

νij = νji. (9.4)

This is the: principle of jump rate symmetry.

85

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

  

 

                . 

http://s.bookboon.com/AlcatelLucent


Study notes for Statistical Physics:  
A concise, unified overview of the subject

109 

Quantum dynamics

Chapter 9
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This perturbation ĥ induces quantum jumps between approximate states |i〉.

9.1.1 Fermi’s golden rule

Fermi assumed that the system could jump from a state |i〉 with energy Ei into some narrow band of
other states |j〉 having energy within δE of Ei. Using time-dependent perturbation theory, he showed that
the probability per unit time of a jump from an initial state |i〉 to a final state |j〉 is given by:

νij =
2π

h̄δE
|hij|2. (9.3)

This is: Fermi’s golden rule.
Note:

1. According to the golden rule, νij cannot be negative.
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859.1.2 The master equation

This involves the same idea as in the Boltzmann equation but now applied to quantum jumps.
Note that νij is:

1. a conditional probability;

2. a probability per unit time.

We can write down an analogue of the Boltzmann equation as:
The change of probability of the system being in state |i〉 = The probability of the system jumping

into state |i〉 from all other states |j〉− the probability of the system jumping out of state |i〉 into any
other state |j〉.

Bearing all the above points in mind, we can write this as an equation:

dpi =

[∑
j

νjipj − pi
∑
j

νij

]
dt, (9.5)

or using jump rate symmetry
dpi
dt

=
∑
j

(νij (pj − pi)) . (9.6)

This is the master equation.
It is first order in time and hence does not possess time-reversal symmetry.

9.2 Applications of the master equation

9.2.1 Diffusion

Consider diffusion on a lattice in one dimension. This could be the motion of a vacancy in a crystal that
moves by changing places with atoms at lattice sites. Take the lattice sites to be labelled by positive or
negative integer values of x, where −N/2 ≤ x ≤ N/2.

Suppose that the probability of the vacancy moving one step to the left or right in time interval dt is
Ddt, then the jump rate is given by:

νij = D if i = x and j = x± 1; (9.7)

= 0 otherwise. (9.8)

Thus the master equation becomes

ṗx =
∑
y

νxy (py − px) = D (px−1 − px) +D (px+1 − px) . (9.9)

This is the master equation for a random walk: specifically, a continuous time random walk on a discrete
lattice.

Once the walk has gone on for a sufficiently large number of steps, we can replace pi by the continuous
p(x, t)dx and the right hand side is the difference of two finite differences which turns into the Laplacian.
Hence the master equation turns into the usual diffusion equation.

9.2.2 Macroscopic systems

The concept of the master equation can be applied directly to macroscopic systems provided that they are
Markovian in nature. This means that probabilities only depend on current values and not on the history
of the process.

86

Download free eBooks at bookboon.com



Study notes for Statistical Physics:  
A concise, unified overview of the subject

110 

Quantum dynamics
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Chapter 10

Consequences of time-reversal symmetry

We have seen that coarse-graining ensures that the statistical description of the system complies with the
second law and is not reversible in time.

Nevertheless, the underlying microphysics is still time-reversal symmetric and paradoxically this has
deep consequences for non-equilibrium thermodynamics.

10.1 Detailed balance

In equilibrium we can write
νijp

eq
i = νjip

eq
j , (10.1)

which is known as the principle of detailed balance. This follows from the principle of equal a priori
probabilities, which in this case takes the form

peqi = peqj , (10.2)

and from the principle of jump rate symmetry.
The principle of detailed balance states that, on average, the actual rate of quantum jumps from i to

j is the same as from j to i. This is a stronger statement than the master equation which only says that
there is overall balance (in equilibrium) between the rates of jumping into and out of state i. The result
is very powerful, because it applies not only to individual states but to any grouping of them.

For example, for two groups of states A and B, the overall rate of transitions from group A to group
B is balanced, in equilibrium, by those from B to A:

νABp
eq
A = νBAp

eq
B . (10.3)

Hence detailed balance arguments can be used for subsystems within a large isolated system; and, by
extension, for systems which are not isolated. In these cases, the principle is far from obvious, since once
states are grouped together in this fashion:

νAB �= νBA and pA �= pB. (10.4)

Nevertheless, detailed balance holds, in equilibrium, in the general form eqn (10.1).

10.2 Dynamics of fluctuations

Consider some fluctuating thermodynamic variable x of zero mean. For example, this could be local
magnetization or local density. It follows that x satisfies:

〈x〉 = 0; 〈x2〉1/2 �= 0,

and hence it is usual to characterize any fluctuation about a mean value by its root-mean-square value.
In addition, it can be important to know to what extent fluctuations at different times are correlated.
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87For this reason, we introduce the correlation function for different times t and t′,

〈x(t)x(t′)〉 ≡ 〈x(t)x(t+ τ)〉, (10.5)

where τ is referred to as the lag time, and is given by τ = t′ − t.
In equilibrium (steady or stationary state) this must be independent of the initial time t and hence:

〈x(t)x(t+ τ)〉 = Mxx(τ). (10.6)

Different fluctuating variables can be correlated with each other, for example the magnetization at two
nearby places is correlated. To study this we can define similarly

〈x(t)y(t′)〉 = Mxy(t
′ − t), (10.7)

for any pair of variables x and y. Here Mxy is the dynamic correlation matrix , of which Mxx(τ) is a
diagonal element.

Time reversal symmetry of the microphysics implies that

〈x(t)y(t′)〉 = 〈x(t′)y(t)〉 (10.8)

or
Mxy(τ) = Mxy(−τ). (10.9)

However, Mxy(−τ) satisfies

Mxy(−τ) = Mxy(t− t′) = 〈x(t)y(t′)〉 (10.10)

= 〈y(t′)x(t)〉 = Myx(t
′ − t)

= Myx(τ).

Hence, combining these two results, we have

Mxy(τ) = Myx(τ). (10.11)

Thus the dynamic correlation matrix is symmetric in the indices x and y.

10.2.1 Linear response theory

Let us now consider the effect of a small perturbation on an equilibriun system. We represent this by a
‘thermodynamic force’ Fx which leads to a ‘displacement’ x. In practice, Fx could be a mechanical force
and x would be a particle displacement. Or, for instance, Fx could be a locally applied magnetic field and
x would be the magnetization.

In either case the work done on the system leads to a change in system energy and formally one adds
−Fxx to the Hamiltonian.

Let us suppose that Fx was applied to the system at t = −∞ and then turned off at t = 0. Then the
resulting mean response of y(t) decays away irreversibly according to:

〈y(t)〉 = Ryx(t)Fx. (10.12)

This defines the response function matrix Ryx(t) where t ≥ 0.
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10.2.2 The fluctuation-dissipation theorem

We have met the general form of the fluctuation-dissipation relation as equation (8.40), which we derived
from the Langevin equation. It is also possible to obtain this result from linear response theory and, in
the notation of this chapter, we have:

Mxx(0)Ryx(t) = Myx(t), (10.13)

and it is readily verified that this is the same form as (8.40). In other words, the fluctuation induced by a
perturbation will on average decay just as if it were a spontaneous fluctuation from equilibrium.

For microscopic systems in equilibrium we have Mxx(0) ≡ 〈x2(0)〉 ≡ kT and the fluctuation-dissipation
equation may be written as:

kTRyx(t) = Myx(t). (10.14)

Thus the ‘response’ to perturbations is determined by the correlation of fluctuations about equilibrium.

10.3 Onsager’s theorem

Finally, if we combine the fluctuation-dissipation relation, in the form of equation (10.14), with equation
(10.11) which expresses the symmetry, with respect to its indices, of the correlation function, we obtain:

Rxy(t) = Ryx(t). (10.15)

This is Onsager’s theorem and states that the response function matrix is symmetric in its indices. As
we have seen that (10.11) follows directly from time reversal symmetry of the microphysics, we have the
interesting result that this underlying time reversal symmetry constrains the irreversible behaviour of a
macroscopic system perturbed away from equilibrium.

The surprising aspect is that Onsager’s theorem states that the mean response of a variable x to a
force Fy is entirely determined by the mean response of y to Fx.

There are many applications for this theorem but we shall just mention that Onsager’s result can be
used to predict the magnitude of the Peltier effect from measurements of the thermoelectric effect.
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10.2.2 The fluctuation-dissipation theorem
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from the Langevin equation. It is also possible to obtain this result from linear response theory and, in
the notation of this chapter, we have:

Mxx(0)Ryx(t) = Myx(t), (10.13)

and it is readily verified that this is the same form as (8.40). In other words, the fluctuation induced by a
perturbation will on average decay just as if it were a spontaneous fluctuation from equilibrium.

For microscopic systems in equilibrium we have Mxx(0) ≡ 〈x2(0)〉 ≡ kT and the fluctuation-dissipation
equation may be written as:

kTRyx(t) = Myx(t). (10.14)

Thus the ‘response’ to perturbations is determined by the correlation of fluctuations about equilibrium.

10.3 Onsager’s theorem

Finally, if we combine the fluctuation-dissipation relation, in the form of equation (10.14), with equation
(10.11) which expresses the symmetry, with respect to its indices, of the correlation function, we obtain:

Rxy(t) = Ryx(t). (10.15)

This is Onsager’s theorem and states that the response function matrix is symmetric in its indices. As
we have seen that (10.11) follows directly from time reversal symmetry of the microphysics, we have the
interesting result that this underlying time reversal symmetry constrains the irreversible behaviour of a
macroscopic system perturbed away from equilibrium.

The surprising aspect is that Onsager’s theorem states that the mean response of a variable x to a
force Fy is entirely determined by the mean response of y to Fx.

There are many applications for this theorem but we shall just mention that Onsager’s result can be
used to predict the magnitude of the Peltier effect from measurements of the thermoelectric effect.
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BBGKY hierarchy, 68
binding energy, 29
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Bogoliubov variational theorem, 49
Boltzmann constant, 3, 74
Boltzmann distribution, 4, 19
Boltzmann equation, 73
Boltzmann H-theorem, 74
Boltzmann Statistics, 22
book-keeping parameter, 31
Bose-Einstein (BE) statistics, 22
Bosons, 21
bridge equation, 12

grand canonical ensemble, 16
Brownian motion, 77

canonical ensemble, 8
centroid coordinate, 31
centroid coordinates, 34
charge renormalization, 37
chemical potential, 13, 21
classical limit, 22
cluster integral, 34
cluster integrals, 33
coarse-graining, 63, 87
collisions

inverse, 74
reconstituting, 74

commutator, 69
compressibility, 40
configurational integral, 29
configurational partition function, 29
conservation of mass, 76
constraints, 2
continuity equation, 76
continuum approximation, 36

validity of, 37
control parameter, 49
control parameters, 27
convective derivative, 61
convective time-derivative, 73
correlation function, 88
Coulomb potential, 25, 35

coupling, 32
coupling strength J , 43
critical exponents, 39

values, 47
critical points, 39

de Broglie wavelength, 22
Debye length, 37
Debye-Hückel theory, 35
Debye-Hückel theory of electrolytes, 27
density distribution, 59

normalized, 59
deterministic picture, 55
disorder, 4
distinguishable assemblies, 6
distinguishable particles, 18
distribution function

single-particle, 5
distribution vector, 66
dressed interaction, 35
dynamic correlation matrix, 88

effective Hamiltonian, 27
energy eigenvalue, 5
energy representation, 12
ensemble, 5

stationary, 8
ensemble average, 5
ensemble of assemblies, 5
entropy

Boltzmann, 4
Boltzmann definition, 3
maximum value, 7
thermodynamic, 3

ergodic principle, 5
ergodicity, 5
expectation value, 7

Fermi’s golden rule, 85
Fermi’s master equation, 85
Fermi-Dirac(FD) statistics, 22
Fermions, 21
ferro-paramagnetic transition, 40
ferromagnetic phase, 46
fluctuation-dissipation relations, 81
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ergodic principle, 15
ergodicity, 15
expectation value, 18

Fermi’s golden rule, 109
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Fermions, 35
ferro-paramagnetic transition, 55
ferromagnetic phase, 62
fluctuation-dissipation relations, 103
fluctuation-dissipation theorem, 106
derivation, 106

generalised H-theorem due to Gibbs, 82
Gibbs H-theorem, 85
Gibbs distribution, 35
global stability, 62
grand canonical ensemble, 19
grand partition function, 34
grand potential, 38
Green function, 103
ground-state probability distribution, 66
Hamilton’s equations, 76
Hamiltonian interaction, 39
Hamiltonian operator, 40
hard-sphere potential, 44
heat capacity, 61
at constant volume, 25
heat reservoir, 15
Helmholtz free energy, 24

information, 15
Ising model, 65
critical exponents, 69
Hamiltonian, 65
Mean-field theory, 67
isolated assembly, 12
isothermal susceptibility, 55

jump rate symmetry, 111

kinetic equation, 92

lag time, 111
Lagrange multiplier as the inverse absolute temperature, 

24
Lagrange multipliers, 20
Lagrange’s method of undetermined multipliers, 19
Landau model, 60
Langevin equation, 98, 106
Laplace’s equation, 104
Lennard-Jones potential, 45
linear response theory, 103, 112
Liouville’s equation, 78, 80
operator formalism, 80
Liouville’s theorem, 78
Liouvillian, 81
local time-derivative, 94
low-density expansions, 42

macroscopic balance equations, 96
macrostate, 12
magnetic moment, 55
magnetization, 60
equilibrium, 63
many-body problem, 39
Markovian systems, 110
mass density, 97
Mayer functions, 48
mean magnetization, 55
mean-field approximation, 52, 56
mean-field assumption, 51
mean-field theory, 65
microcanonical ensemble, 19
microstate, 12, 13
minimum free energy, 63
molecular chaos, 93
molecular clusters, 49
molecular collisions, 19
molecular field, 52, 56
molecular force autocorrelation, 106
molecular impacts as a random force, 99
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nonequilibrium system, 89
number density, 14
number operator, 40

occupation number representation, 13
Onsager’s theorem, 113
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paramagnetic phase, 62
partial summation of the perturbation series, 51
partition function, 24
grand canonical ensemble, 26
single-particle, 32
Peltier effect, 113
perfect gas, 43
perturbation theory, 42
phase space, 43
Poisson bracket, 76, 89
Poisson’s equation, 52, 104
pressure instantaneous, 23
thermodynamic, 23
principle of detailed balance, 111
principle of equal a priori probabilities, 111
principle of jump rate symmetry, 109
probability density as a fluid, 80
probability distribution, 15
single-particle, 32

quantum dynamics, 108
quantum number, 16
quantum-mechanical exchange interaction, 58
quasi-electron, 41
quasi-particle, 41

reduced densities, 91
reduced distribution function, 92
reduced probability distributions, 85
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renormalization, 41, 53
renormalization process, 41

response function, 55
response function matrix, 113

saturation magnetisation, 58
screened potential, 41, 53
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self-consistent approximation, 52
self-consistent assumption, 58
self-consistent field theory, 51
state equilibrium, 14
initial, 15
state vector, 77
stationary ensembles, 18, 31
stationary state, 15
statistical weight, 12, 14
nonequilibrium, 14
Stirling’s approximation, 37
Stirling’s formula, 16
Stokes drag, 99
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symmetry-breaking, 61

temperature as a control parameter, 47
theoretical models, 64
thermal equilibrium, 15
thermodynamic limit, 14
time’s arrow, 74
time-reversal symmetric, 81
time-reversal symmetry, 111
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